Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912295172> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2912295172 endingPage "251" @default.
- W2912295172 startingPage "243" @default.
- W2912295172 abstract "In this paper, we put forward an effective approach of segmentation of sentiment in social media texts that may include informal language or pop culture texts. We introduce a method to churn out vector representations from phrase-level sentences. We train a recurrent neural network combining quantitative and qualitative methods with lexical features stored in gold standard array of lexicons. In this work, we extract opinion expression using deep RNNs in the form of a token-level sequence-labeling sentiment from variable length of text corpuses. Furthermore, in this paper, we have introduced a novel approach to determine whether the article is satirical or not via the combination of computational linguistics and machine learning tools. We have compared the performance of our algorithm with respect to the benchmark methods, on satire detection as well, on benchmark datasets, news articles, and social media platforms for better reflection of the experiment, and we yielded competitive and satisfactory results." @default.
- W2912295172 created "2019-02-21" @default.
- W2912295172 creator A5059428992 @default.
- W2912295172 creator A5088822910 @default.
- W2912295172 date "2019-01-01" @default.
- W2912295172 modified "2023-09-27" @default.
- W2912295172 title "A Deep Learning-Inspired Method for Social Media Satire Detection" @default.
- W2912295172 cites W2096765155 @default.
- W2912295172 cites W2110485445 @default.
- W2912295172 cites W2171928131 @default.
- W2912295172 cites W2399456070 @default.
- W2912295172 cites W2512532697 @default.
- W2912295172 cites W2513973860 @default.
- W2912295172 cites W2529281176 @default.
- W2912295172 cites W2964126051 @default.
- W2912295172 cites W4234121419 @default.
- W2912295172 cites W4235505822 @default.
- W2912295172 doi "https://doi.org/10.1007/978-981-13-3393-4_25" @default.
- W2912295172 hasPublicationYear "2019" @default.
- W2912295172 type Work @default.
- W2912295172 sameAs 2912295172 @default.
- W2912295172 citedByCount "2" @default.
- W2912295172 countsByYear W29122951722021 @default.
- W2912295172 countsByYear W29122951722022 @default.
- W2912295172 crossrefType "book-chapter" @default.
- W2912295172 hasAuthorship W2912295172A5059428992 @default.
- W2912295172 hasAuthorship W2912295172A5088822910 @default.
- W2912295172 hasConcept C108583219 @default.
- W2912295172 hasConcept C136764020 @default.
- W2912295172 hasConcept C142362112 @default.
- W2912295172 hasConcept C154945302 @default.
- W2912295172 hasConcept C15744967 @default.
- W2912295172 hasConcept C41008148 @default.
- W2912295172 hasConcept C518677369 @default.
- W2912295172 hasConceptScore W2912295172C108583219 @default.
- W2912295172 hasConceptScore W2912295172C136764020 @default.
- W2912295172 hasConceptScore W2912295172C142362112 @default.
- W2912295172 hasConceptScore W2912295172C154945302 @default.
- W2912295172 hasConceptScore W2912295172C15744967 @default.
- W2912295172 hasConceptScore W2912295172C41008148 @default.
- W2912295172 hasConceptScore W2912295172C518677369 @default.
- W2912295172 hasLocation W29122951721 @default.
- W2912295172 hasOpenAccess W2912295172 @default.
- W2912295172 hasPrimaryLocation W29122951721 @default.
- W2912295172 hasRelatedWork W2126887587 @default.
- W2912295172 hasRelatedWork W2731899572 @default.
- W2912295172 hasRelatedWork W2748952813 @default.
- W2912295172 hasRelatedWork W2899084033 @default.
- W2912295172 hasRelatedWork W2939353110 @default.
- W2912295172 hasRelatedWork W2941846814 @default.
- W2912295172 hasRelatedWork W2948658236 @default.
- W2912295172 hasRelatedWork W3009238340 @default.
- W2912295172 hasRelatedWork W3215138031 @default.
- W2912295172 hasRelatedWork W4230611425 @default.
- W2912295172 isParatext "false" @default.
- W2912295172 isRetracted "false" @default.
- W2912295172 magId "2912295172" @default.
- W2912295172 workType "book-chapter" @default.