Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912297727> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2912297727 abstract "As computing systems are more frequently and more actively intervening to improve people's work and daily lives, it is critical to correctly predict and understand the causal effects of these interventions. Conventional machine learning methods, built on pattern recognition and correlational analyses, are insufficient for causal analysis. This tutorial will introduce participants to concepts in causal inference and counterfactual reasoning, drawing from a broad literature from statistics, social sciences and machine learning. We will first motivate the use of causal inference through examples in domains such as recommender systems, social media datasets, health, education and governance. To tackle such questions, we will introduce the key ingredient that causal analysis depends on---counterfactual reasoning---and describe the two most popular frameworks based on Bayesian graphical models and potential outcomes. Based on this, we will cover a range of methods suitable for doing causal inference with large-scale online data, including randomized experiments, observational methods like matching and stratification, and natural experiment-based methods such as instrumental variables and regression discontinuity. We will also focus on best practices for evaluation and validation of causal inference techniques, drawing from our own experiences. After attending this tutorial, participants will understand the basics of causal inference, be able to appropriately apply the most common causal inference methods, and be able to recognize situations where more complex methods are required." @default.
- W2912297727 created "2019-02-21" @default.
- W2912297727 creator A5079458476 @default.
- W2912297727 creator A5080592530 @default.
- W2912297727 date "2019-01-30" @default.
- W2912297727 modified "2023-09-23" @default.
- W2912297727 title "Causal Inference and Counterfactual Reasoning (3hr Tutorial)" @default.
- W2912297727 cites W2049073146 @default.
- W2912297727 cites W2049938617 @default.
- W2912297727 cites W2137370054 @default.
- W2912297727 cites W2770444568 @default.
- W2912297727 cites W2964337893 @default.
- W2912297727 cites W3009804075 @default.
- W2912297727 cites W3099420497 @default.
- W2912297727 cites W4205271706 @default.
- W2912297727 cites W4229737049 @default.
- W2912297727 cites W4242484299 @default.
- W2912297727 doi "https://doi.org/10.1145/3289600.3291381" @default.
- W2912297727 hasPublicationYear "2019" @default.
- W2912297727 type Work @default.
- W2912297727 sameAs 2912297727 @default.
- W2912297727 citedByCount "6" @default.
- W2912297727 countsByYear W29122977272020 @default.
- W2912297727 countsByYear W29122977272021 @default.
- W2912297727 countsByYear W29122977272022 @default.
- W2912297727 crossrefType "proceedings-article" @default.
- W2912297727 hasAuthorship W2912297727A5079458476 @default.
- W2912297727 hasAuthorship W2912297727A5080592530 @default.
- W2912297727 hasConcept C108650721 @default.
- W2912297727 hasConcept C111472728 @default.
- W2912297727 hasConcept C115086926 @default.
- W2912297727 hasConcept C138885662 @default.
- W2912297727 hasConcept C149782125 @default.
- W2912297727 hasConcept C154945302 @default.
- W2912297727 hasConcept C15744967 @default.
- W2912297727 hasConcept C158600405 @default.
- W2912297727 hasConcept C169760540 @default.
- W2912297727 hasConcept C169900460 @default.
- W2912297727 hasConcept C2776214188 @default.
- W2912297727 hasConcept C33923547 @default.
- W2912297727 hasConcept C41008148 @default.
- W2912297727 hasConceptScore W2912297727C108650721 @default.
- W2912297727 hasConceptScore W2912297727C111472728 @default.
- W2912297727 hasConceptScore W2912297727C115086926 @default.
- W2912297727 hasConceptScore W2912297727C138885662 @default.
- W2912297727 hasConceptScore W2912297727C149782125 @default.
- W2912297727 hasConceptScore W2912297727C154945302 @default.
- W2912297727 hasConceptScore W2912297727C15744967 @default.
- W2912297727 hasConceptScore W2912297727C158600405 @default.
- W2912297727 hasConceptScore W2912297727C169760540 @default.
- W2912297727 hasConceptScore W2912297727C169900460 @default.
- W2912297727 hasConceptScore W2912297727C2776214188 @default.
- W2912297727 hasConceptScore W2912297727C33923547 @default.
- W2912297727 hasConceptScore W2912297727C41008148 @default.
- W2912297727 hasLocation W29122977271 @default.
- W2912297727 hasOpenAccess W2912297727 @default.
- W2912297727 hasPrimaryLocation W29122977271 @default.
- W2912297727 hasRelatedWork W2025218202 @default.
- W2912297727 hasRelatedWork W2389937032 @default.
- W2912297727 hasRelatedWork W2462689321 @default.
- W2912297727 hasRelatedWork W2478148368 @default.
- W2912297727 hasRelatedWork W3005948613 @default.
- W2912297727 hasRelatedWork W3010656855 @default.
- W2912297727 hasRelatedWork W3035141830 @default.
- W2912297727 hasRelatedWork W3089238887 @default.
- W2912297727 hasRelatedWork W3110384393 @default.
- W2912297727 hasRelatedWork W4205554343 @default.
- W2912297727 isParatext "false" @default.
- W2912297727 isRetracted "false" @default.
- W2912297727 magId "2912297727" @default.
- W2912297727 workType "article" @default.