Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912305025> ?p ?o ?g. }
- W2912305025 endingPage "169" @default.
- W2912305025 startingPage "153" @default.
- W2912305025 abstract "Abstract Transverse Flux Permanent Magnet Motor (TFPMM) has received extensive attention in the field of electric vehicles. The magnetic circuit of TFPMM is three-dimensional and non-linear, which leads to the high nonlinearity of electromagnetic torque. Although the three-dimensional finite element method (3DFEM) could be used to estimate torque, it is very time-consuming. Instead of it, this study adopts a kind of machine learning method—Gaussian process regression (GPR). For the hyper-parameters optimization of GPR, most previous studies used single-objective algorithms for improving the regression accuracy. However, GPR is an algorithm of probability prediction and it could not guarantee to have the satisfactory confidence interval characteristic simultaneously while the regression precision achieves optimal. Therefore this paper proposes a variable parameters fuzzy dominance genetic algorithm (VPFDGA) which is suitable for the multi-objective optimization, including the optimization of regression precision, confidence interval reliability, confidence interval width and skill score. By combining GPR with VPFDGA, the electromagnetic torque of a building-block transverse flux permanent magnet motor (B-TFPMM) is estimated by VPFDGA-GPR (GPR based on variable parameters fuzzy dominance genetic algorithm). Besides, two other GPRs based multi-objective optimization, three GPRs based on single-objective optimization and a GPR based on weighted sum method that is the classic multi-objective optimization algorithm are all implemented to compare with VPFDGA-GPR. The results of comparison show that VPFDGA-GPR has the better performances including the higher regression precision, more powerful ability of probability prediction, higher stability, less convergence time and so on." @default.
- W2912305025 created "2019-02-21" @default.
- W2912305025 creator A5070461259 @default.
- W2912305025 creator A5081547817 @default.
- W2912305025 creator A5090728786 @default.
- W2912305025 date "2019-03-01" @default.
- W2912305025 modified "2023-09-24" @default.
- W2912305025 title "A Gaussian process regression based on variable parameters fuzzy dominance genetic algorithm for B-TFPMM torque estimation" @default.
- W2912305025 cites W1903128255 @default.
- W2912305025 cites W1966276201 @default.
- W2912305025 cites W1980432290 @default.
- W2912305025 cites W1992102747 @default.
- W2912305025 cites W2006558836 @default.
- W2912305025 cites W2021125631 @default.
- W2912305025 cites W2030269393 @default.
- W2912305025 cites W2040378535 @default.
- W2912305025 cites W2040726420 @default.
- W2912305025 cites W2040889326 @default.
- W2912305025 cites W2051821221 @default.
- W2912305025 cites W2055642893 @default.
- W2912305025 cites W2055991985 @default.
- W2912305025 cites W2060682310 @default.
- W2912305025 cites W2088946762 @default.
- W2912305025 cites W2120823309 @default.
- W2912305025 cites W2124167721 @default.
- W2912305025 cites W2124640139 @default.
- W2912305025 cites W2126105956 @default.
- W2912305025 cites W2148310265 @default.
- W2912305025 cites W2150748877 @default.
- W2912305025 cites W2156604062 @default.
- W2912305025 cites W2167145078 @default.
- W2912305025 cites W2292046797 @default.
- W2912305025 cites W2308386306 @default.
- W2912305025 cites W2517313142 @default.
- W2912305025 cites W2567298145 @default.
- W2912305025 cites W2611084161 @default.
- W2912305025 cites W2748859796 @default.
- W2912305025 cites W2995241495 @default.
- W2912305025 cites W4234886276 @default.
- W2912305025 doi "https://doi.org/10.1016/j.neucom.2018.11.086" @default.
- W2912305025 hasPublicationYear "2019" @default.
- W2912305025 type Work @default.
- W2912305025 sameAs 2912305025 @default.
- W2912305025 citedByCount "12" @default.
- W2912305025 countsByYear W29123050252019 @default.
- W2912305025 countsByYear W29123050252020 @default.
- W2912305025 countsByYear W29123050252021 @default.
- W2912305025 countsByYear W29123050252022 @default.
- W2912305025 countsByYear W29123050252023 @default.
- W2912305025 crossrefType "journal-article" @default.
- W2912305025 hasAuthorship W2912305025A5070461259 @default.
- W2912305025 hasAuthorship W2912305025A5081547817 @default.
- W2912305025 hasAuthorship W2912305025A5090728786 @default.
- W2912305025 hasConcept C104317684 @default.
- W2912305025 hasConcept C105795698 @default.
- W2912305025 hasConcept C111919701 @default.
- W2912305025 hasConcept C11413529 @default.
- W2912305025 hasConcept C119857082 @default.
- W2912305025 hasConcept C121332964 @default.
- W2912305025 hasConcept C134306372 @default.
- W2912305025 hasConcept C144171764 @default.
- W2912305025 hasConcept C151913843 @default.
- W2912305025 hasConcept C152877465 @default.
- W2912305025 hasConcept C153180895 @default.
- W2912305025 hasConcept C154945302 @default.
- W2912305025 hasConcept C163716315 @default.
- W2912305025 hasConcept C182365436 @default.
- W2912305025 hasConcept C2775924081 @default.
- W2912305025 hasConcept C33923547 @default.
- W2912305025 hasConcept C41008148 @default.
- W2912305025 hasConcept C47446073 @default.
- W2912305025 hasConcept C54355233 @default.
- W2912305025 hasConcept C58166 @default.
- W2912305025 hasConcept C61326573 @default.
- W2912305025 hasConcept C62520636 @default.
- W2912305025 hasConcept C83546350 @default.
- W2912305025 hasConcept C86803240 @default.
- W2912305025 hasConcept C97355855 @default.
- W2912305025 hasConcept C98045186 @default.
- W2912305025 hasConceptScore W2912305025C104317684 @default.
- W2912305025 hasConceptScore W2912305025C105795698 @default.
- W2912305025 hasConceptScore W2912305025C111919701 @default.
- W2912305025 hasConceptScore W2912305025C11413529 @default.
- W2912305025 hasConceptScore W2912305025C119857082 @default.
- W2912305025 hasConceptScore W2912305025C121332964 @default.
- W2912305025 hasConceptScore W2912305025C134306372 @default.
- W2912305025 hasConceptScore W2912305025C144171764 @default.
- W2912305025 hasConceptScore W2912305025C151913843 @default.
- W2912305025 hasConceptScore W2912305025C152877465 @default.
- W2912305025 hasConceptScore W2912305025C153180895 @default.
- W2912305025 hasConceptScore W2912305025C154945302 @default.
- W2912305025 hasConceptScore W2912305025C163716315 @default.
- W2912305025 hasConceptScore W2912305025C182365436 @default.
- W2912305025 hasConceptScore W2912305025C2775924081 @default.
- W2912305025 hasConceptScore W2912305025C33923547 @default.
- W2912305025 hasConceptScore W2912305025C41008148 @default.
- W2912305025 hasConceptScore W2912305025C47446073 @default.
- W2912305025 hasConceptScore W2912305025C54355233 @default.