Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912306336> ?p ?o ?g. }
- W2912306336 endingPage "509" @default.
- W2912306336 startingPage "488" @default.
- W2912306336 abstract "The present work explores the potential of an artificial neural network platform to emulate the performance, emissions and stability indices of an existing single cylinder diesel engine operating in dual-fuel mode with methanol port injection under varying fuel injection pressure. This investigation is further augmented by hydrous methanol injection strategies. Brake power, fuel injection pressure, diesel specific fuel consumption, methanol specific fuel consumption, air flow rate, exhaust oxygen and temperature have been chosen as the model inputs while oxides of nitrogen, unburned hydrocarbon, carbon monoxide, carbon dioxide, soot have been chosen as the emission responses to be modelled along with equivalent brake specific fuel consumption as the performance response and coefficient of variance of indicated mean effective pressure as the stability parameter to be estimated. Absolute, relative and percentage-based statistical error metrics have been employed for model evaluation. The developed model shows an excellent agreement with the experimental data as evident from its extremely low normalized mean square error, symmetric mean absolute percentage error, Normalized root mean square error, mean squared relative error footprint coupled with high coefficient of determination which was observed to be within a range of 0.983–0.9999 and a corresponding Nash Sutcliffe coefficient of efficiency of 85%–99.6%. Furthermore, low Theil uncertainty evaluation and Kullback-Leibler Divergence values imparted a commendable credence of robustness to the estimation capability of the developed model. The present study manifests a computationally efficient and reliable virtual sensing platform to simultaneously emulate the emission-performance and stability parameters of a diesel-methanol partially premixed dual fuel operational paradigms in real time engine control strategies." @default.
- W2912306336 created "2019-02-21" @default.
- W2912306336 creator A5005643838 @default.
- W2912306336 creator A5038837754 @default.
- W2912306336 creator A5084364537 @default.
- W2912306336 date "2019-03-01" @default.
- W2912306336 modified "2023-10-16" @default.
- W2912306336 title "Development of an artificial neural network based virtual sensing platform for the simultaneous prediction of emission-performance-stability parameters of a diesel engine operating in dual fuel mode with port injected methanol" @default.
- W2912306336 cites W1508312663 @default.
- W2912306336 cites W1578416157 @default.
- W2912306336 cites W1655651860 @default.
- W2912306336 cites W1812453514 @default.
- W2912306336 cites W1841246467 @default.
- W2912306336 cites W1966663137 @default.
- W2912306336 cites W1966796394 @default.
- W2912306336 cites W1969868418 @default.
- W2912306336 cites W1970214772 @default.
- W2912306336 cites W1972402957 @default.
- W2912306336 cites W1974809633 @default.
- W2912306336 cites W1978439054 @default.
- W2912306336 cites W1981240940 @default.
- W2912306336 cites W1991996283 @default.
- W2912306336 cites W1995363383 @default.
- W2912306336 cites W1996122683 @default.
- W2912306336 cites W1997114172 @default.
- W2912306336 cites W1998164713 @default.
- W2912306336 cites W2001372583 @default.
- W2912306336 cites W2008461079 @default.
- W2912306336 cites W2010222480 @default.
- W2912306336 cites W2033373527 @default.
- W2912306336 cites W2041558134 @default.
- W2912306336 cites W2042460614 @default.
- W2912306336 cites W2065902166 @default.
- W2912306336 cites W2072629689 @default.
- W2912306336 cites W2075957948 @default.
- W2912306336 cites W2079031035 @default.
- W2912306336 cites W2086395883 @default.
- W2912306336 cites W2100072843 @default.
- W2912306336 cites W2113287505 @default.
- W2912306336 cites W2126676236 @default.
- W2912306336 cites W2172234684 @default.
- W2912306336 cites W2172514547 @default.
- W2912306336 cites W2281846780 @default.
- W2912306336 cites W2409603045 @default.
- W2912306336 cites W2517658280 @default.
- W2912306336 cites W2553888165 @default.
- W2912306336 cites W2559153109 @default.
- W2912306336 cites W2559742957 @default.
- W2912306336 cites W2563790762 @default.
- W2912306336 cites W2566399210 @default.
- W2912306336 cites W2598379669 @default.
- W2912306336 cites W2620084289 @default.
- W2912306336 cites W608402566 @default.
- W2912306336 doi "https://doi.org/10.1016/j.enconman.2019.01.087" @default.
- W2912306336 hasPublicationYear "2019" @default.
- W2912306336 type Work @default.
- W2912306336 sameAs 2912306336 @default.
- W2912306336 citedByCount "49" @default.
- W2912306336 countsByYear W29123063362019 @default.
- W2912306336 countsByYear W29123063362020 @default.
- W2912306336 countsByYear W29123063362021 @default.
- W2912306336 countsByYear W29123063362022 @default.
- W2912306336 countsByYear W29123063362023 @default.
- W2912306336 crossrefType "journal-article" @default.
- W2912306336 hasAuthorship W2912306336A5005643838 @default.
- W2912306336 hasAuthorship W2912306336A5038837754 @default.
- W2912306336 hasAuthorship W2912306336A5084364537 @default.
- W2912306336 hasConcept C105795698 @default.
- W2912306336 hasConcept C11413529 @default.
- W2912306336 hasConcept C122383733 @default.
- W2912306336 hasConcept C127413603 @default.
- W2912306336 hasConcept C128143373 @default.
- W2912306336 hasConcept C138171918 @default.
- W2912306336 hasConcept C139945424 @default.
- W2912306336 hasConcept C150217764 @default.
- W2912306336 hasConcept C171146098 @default.
- W2912306336 hasConcept C25797200 @default.
- W2912306336 hasConcept C2780804531 @default.
- W2912306336 hasConcept C33923547 @default.
- W2912306336 hasConcept C39432304 @default.
- W2912306336 hasConcept C44154836 @default.
- W2912306336 hasConcept C45882903 @default.
- W2912306336 hasConcept C511840579 @default.
- W2912306336 hasConcept C73081478 @default.
- W2912306336 hasConceptScore W2912306336C105795698 @default.
- W2912306336 hasConceptScore W2912306336C11413529 @default.
- W2912306336 hasConceptScore W2912306336C122383733 @default.
- W2912306336 hasConceptScore W2912306336C127413603 @default.
- W2912306336 hasConceptScore W2912306336C128143373 @default.
- W2912306336 hasConceptScore W2912306336C138171918 @default.
- W2912306336 hasConceptScore W2912306336C139945424 @default.
- W2912306336 hasConceptScore W2912306336C150217764 @default.
- W2912306336 hasConceptScore W2912306336C171146098 @default.
- W2912306336 hasConceptScore W2912306336C25797200 @default.
- W2912306336 hasConceptScore W2912306336C2780804531 @default.
- W2912306336 hasConceptScore W2912306336C33923547 @default.
- W2912306336 hasConceptScore W2912306336C39432304 @default.
- W2912306336 hasConceptScore W2912306336C44154836 @default.