Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912306840> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2912306840 abstract "The minimum connectivity inference (MCI) problem is an NP-hard discrete optimization problem. Its description is based on a simple, undirected, and complete graph given by a vertex set. Moreover, a finite number of clusters (subsets of the vertex set) are given. These clusters may overlap each other. The problem consists in determining an edge set with minimal cardinality so that the vertices in each cluster are connected by edges of this set which have both vertices in the cluster. Research on the MCI problem can be traced back from 1976 to the present and includes complexity results, reduction techniques, heuristic solution approaches, and various applications. Some years ago, the MCI problem has been modeled as a mixed integer linear programming (MILP) problem which enables to solve MCI instances exactly up to a small size. An improved MILP formulation, recently introduced by the authors of the present contribution, allows for successfully tackling moderately sized instances. To further increase the size of MCI instances that can be solved exactly (or to reduce the required computation time), reduction techniques can be very helpful. Such techniques aim at converting a given instance into an instance with fewer clusters or vertices or both. Our contribution will briefly review the improved MILP-based solution approach as well as reduction techniques. Based on this, we will present a computational study on the influence of several reduction techniques on the problem size and the computation time. In addition, we will also discuss the effect of a heuristic reduction technique." @default.
- W2912306840 created "2019-02-21" @default.
- W2912306840 creator A5028962941 @default.
- W2912306840 creator A5054910447 @default.
- W2912306840 creator A5063581189 @default.
- W2912306840 creator A5075795096 @default.
- W2912306840 date "2019-01-01" @default.
- W2912306840 modified "2023-09-27" @default.
- W2912306840 title "A Computational Study of Reduction Techniques for the Minimum Connectivity Inference Problem" @default.
- W2912306840 cites W1981890243 @default.
- W2912306840 cites W2013504716 @default.
- W2912306840 cites W2049693545 @default.
- W2912306840 cites W2058702473 @default.
- W2912306840 cites W2073549416 @default.
- W2912306840 cites W2080022329 @default.
- W2912306840 cites W2093139355 @default.
- W2912306840 cites W2130739699 @default.
- W2912306840 cites W2800207446 @default.
- W2912306840 doi "https://doi.org/10.1007/978-3-030-02487-1_7" @default.
- W2912306840 hasPublicationYear "2019" @default.
- W2912306840 type Work @default.
- W2912306840 sameAs 2912306840 @default.
- W2912306840 citedByCount "2" @default.
- W2912306840 countsByYear W29123068402019 @default.
- W2912306840 crossrefType "book-chapter" @default.
- W2912306840 hasAuthorship W2912306840A5028962941 @default.
- W2912306840 hasAuthorship W2912306840A5054910447 @default.
- W2912306840 hasAuthorship W2912306840A5063581189 @default.
- W2912306840 hasAuthorship W2912306840A5075795096 @default.
- W2912306840 hasConcept C111335779 @default.
- W2912306840 hasConcept C11413529 @default.
- W2912306840 hasConcept C124101348 @default.
- W2912306840 hasConcept C126255220 @default.
- W2912306840 hasConcept C132525143 @default.
- W2912306840 hasConcept C154945302 @default.
- W2912306840 hasConcept C165526019 @default.
- W2912306840 hasConcept C173801870 @default.
- W2912306840 hasConcept C177264268 @default.
- W2912306840 hasConcept C179799912 @default.
- W2912306840 hasConcept C199360897 @default.
- W2912306840 hasConcept C2524010 @default.
- W2912306840 hasConcept C2776214188 @default.
- W2912306840 hasConcept C33923547 @default.
- W2912306840 hasConcept C41008148 @default.
- W2912306840 hasConcept C41045048 @default.
- W2912306840 hasConcept C45374587 @default.
- W2912306840 hasConcept C56086750 @default.
- W2912306840 hasConcept C80444323 @default.
- W2912306840 hasConcept C80899671 @default.
- W2912306840 hasConcept C87117476 @default.
- W2912306840 hasConceptScore W2912306840C111335779 @default.
- W2912306840 hasConceptScore W2912306840C11413529 @default.
- W2912306840 hasConceptScore W2912306840C124101348 @default.
- W2912306840 hasConceptScore W2912306840C126255220 @default.
- W2912306840 hasConceptScore W2912306840C132525143 @default.
- W2912306840 hasConceptScore W2912306840C154945302 @default.
- W2912306840 hasConceptScore W2912306840C165526019 @default.
- W2912306840 hasConceptScore W2912306840C173801870 @default.
- W2912306840 hasConceptScore W2912306840C177264268 @default.
- W2912306840 hasConceptScore W2912306840C179799912 @default.
- W2912306840 hasConceptScore W2912306840C199360897 @default.
- W2912306840 hasConceptScore W2912306840C2524010 @default.
- W2912306840 hasConceptScore W2912306840C2776214188 @default.
- W2912306840 hasConceptScore W2912306840C33923547 @default.
- W2912306840 hasConceptScore W2912306840C41008148 @default.
- W2912306840 hasConceptScore W2912306840C41045048 @default.
- W2912306840 hasConceptScore W2912306840C45374587 @default.
- W2912306840 hasConceptScore W2912306840C56086750 @default.
- W2912306840 hasConceptScore W2912306840C80444323 @default.
- W2912306840 hasConceptScore W2912306840C80899671 @default.
- W2912306840 hasConceptScore W2912306840C87117476 @default.
- W2912306840 hasLocation W29123068401 @default.
- W2912306840 hasOpenAccess W2912306840 @default.
- W2912306840 hasPrimaryLocation W29123068401 @default.
- W2912306840 hasRelatedWork W1982719520 @default.
- W2912306840 hasRelatedWork W1992897947 @default.
- W2912306840 hasRelatedWork W1993650482 @default.
- W2912306840 hasRelatedWork W2009333953 @default.
- W2912306840 hasRelatedWork W2068875014 @default.
- W2912306840 hasRelatedWork W2095316219 @default.
- W2912306840 hasRelatedWork W2164369778 @default.
- W2912306840 hasRelatedWork W2560239528 @default.
- W2912306840 hasRelatedWork W2912306840 @default.
- W2912306840 hasRelatedWork W2964211993 @default.
- W2912306840 isParatext "false" @default.
- W2912306840 isRetracted "false" @default.
- W2912306840 magId "2912306840" @default.
- W2912306840 workType "book-chapter" @default.