Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912334043> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2912334043 endingPage "20" @default.
- W2912334043 startingPage "3" @default.
- W2912334043 abstract "Optical dimensional metrology (ODM) technology that produces spatially dense surface measurement data is increasingly employed for quality-control purposes in discrete parts manufacturing. Such data contain a wealth of information on the surface dimensional characteristics of individual parts and on the nature of part-to-part variation. The large body of prior quality-control work on analyzing dimensional metrology data has focused heavily on fitting parametric geometric features such as circles or planes to the data for individual parts and checking whether the features are within specifications; and subsequent analysis of part-to-part variation is restricted to those specific features. In this article, we present an approach for identifying and visualizing the nature of part-to-part variation in a more general manner that is not restricted to a prespecified set of parametric features. The basis for the approach is manifold learning applied to the collective ODM data for a set of measured parts. Particular emphasis is on handling the extremely high dimensionality of ODM data." @default.
- W2912334043 created "2019-02-21" @default.
- W2912334043 creator A5002544391 @default.
- W2912334043 creator A5028637047 @default.
- W2912334043 creator A5050269446 @default.
- W2912334043 date "2019-01-02" @default.
- W2912334043 modified "2023-09-23" @default.
- W2912334043 title "Identifying and visualizing part-to-part variation with spatially dense optical dimensional metrology data" @default.
- W2912334043 cites W1742512077 @default.
- W2912334043 cites W1966457314 @default.
- W2912334043 cites W1969883785 @default.
- W2912334043 cites W1980574926 @default.
- W2912334043 cites W1984256563 @default.
- W2912334043 cites W1991296187 @default.
- W2912334043 cites W1993436046 @default.
- W2912334043 cites W2001141328 @default.
- W2912334043 cites W2006554089 @default.
- W2912334043 cites W2013663963 @default.
- W2912334043 cites W2053186076 @default.
- W2912334043 cites W2056424034 @default.
- W2912334043 cites W2071441027 @default.
- W2912334043 cites W2077776048 @default.
- W2912334043 cites W2089493437 @default.
- W2912334043 cites W2134312057 @default.
- W2912334043 cites W2141224535 @default.
- W2912334043 cites W581040779 @default.
- W2912334043 cites W879878326 @default.
- W2912334043 cites W2473641268 @default.
- W2912334043 cites W32139616 @default.
- W2912334043 doi "https://doi.org/10.1080/00224065.2018.1541380" @default.
- W2912334043 hasPublicationYear "2019" @default.
- W2912334043 type Work @default.
- W2912334043 sameAs 2912334043 @default.
- W2912334043 citedByCount "3" @default.
- W2912334043 countsByYear W29123340432021 @default.
- W2912334043 countsByYear W29123340432022 @default.
- W2912334043 crossrefType "journal-article" @default.
- W2912334043 hasAuthorship W2912334043A5002544391 @default.
- W2912334043 hasAuthorship W2912334043A5028637047 @default.
- W2912334043 hasAuthorship W2912334043A5050269446 @default.
- W2912334043 hasConcept C105795698 @default.
- W2912334043 hasConcept C121332964 @default.
- W2912334043 hasConcept C195766429 @default.
- W2912334043 hasConcept C2778334786 @default.
- W2912334043 hasConcept C33923547 @default.
- W2912334043 hasConcept C41008148 @default.
- W2912334043 hasConcept C44870925 @default.
- W2912334043 hasConceptScore W2912334043C105795698 @default.
- W2912334043 hasConceptScore W2912334043C121332964 @default.
- W2912334043 hasConceptScore W2912334043C195766429 @default.
- W2912334043 hasConceptScore W2912334043C2778334786 @default.
- W2912334043 hasConceptScore W2912334043C33923547 @default.
- W2912334043 hasConceptScore W2912334043C41008148 @default.
- W2912334043 hasConceptScore W2912334043C44870925 @default.
- W2912334043 hasIssue "1" @default.
- W2912334043 hasLocation W29123340431 @default.
- W2912334043 hasOpenAccess W2912334043 @default.
- W2912334043 hasPrimaryLocation W29123340431 @default.
- W2912334043 hasRelatedWork W2013580744 @default.
- W2912334043 hasRelatedWork W2044846198 @default.
- W2912334043 hasRelatedWork W2056123165 @default.
- W2912334043 hasRelatedWork W2359157459 @default.
- W2912334043 hasRelatedWork W2386430105 @default.
- W2912334043 hasRelatedWork W2589291232 @default.
- W2912334043 hasRelatedWork W2748952813 @default.
- W2912334043 hasRelatedWork W2899084033 @default.
- W2912334043 hasRelatedWork W3160174405 @default.
- W2912334043 hasRelatedWork W579888135 @default.
- W2912334043 hasVolume "51" @default.
- W2912334043 isParatext "false" @default.
- W2912334043 isRetracted "false" @default.
- W2912334043 magId "2912334043" @default.
- W2912334043 workType "article" @default.