Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912342488> ?p ?o ?g. }
- W2912342488 endingPage "294" @default.
- W2912342488 startingPage "276" @default.
- W2912342488 abstract "Occupancy behaviour plays an important role in energy consumption in buildings. Currently, the shallow understanding of occupancy has led to a considerable performance gap between predicted and measured energy use. This paper presents an approach to estimate the occupancy based on blind system identification (BSI), and a prediction model of electricity consumption by an air-conditioning system is developed and reported based on an artificial neural network with the BSI estimation of the number of occupants as an input. This starts from the identification of indoor CO2 dynamics derived from the mass-conservation law and venting levels. The unknown parameters, including the occupancy and model parameters, are estimated by using a frequentist maximum-likelihood algorithm and Bayesian estimation. The second phase is to establish the prediction model of the electricity consumption of the air-conditioning system by using a feed-forward neural network (FFNN) and extreme learning machine (ELM), as well as ensemble models. To analyse some aspects of the benchmark test for identifying the effect of structure parameters and input-selection alternatives, three studies are conducted on (1) the effect of predictor selection based on principal component analysis, (2) the effect of the estimated occupancy as the supplementary input, and (3) the effect of the neural network ensemble. The result shows that the occupancy number, as the input, is able to improve the accuracy in predicting energy consumption using a neural-network model." @default.
- W2912342488 created "2019-02-21" @default.
- W2912342488 creator A5007747916 @default.
- W2912342488 creator A5009248953 @default.
- W2912342488 creator A5010836271 @default.
- W2912342488 creator A5017102094 @default.
- W2912342488 creator A5032699575 @default.
- W2912342488 creator A5051665018 @default.
- W2912342488 creator A5070378980 @default.
- W2912342488 creator A5074307245 @default.
- W2912342488 creator A5086203841 @default.
- W2912342488 date "2019-04-01" @default.
- W2912342488 modified "2023-10-14" @default.
- W2912342488 title "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks" @default.
- W2912342488 cites W1619614355 @default.
- W2912342488 cites W1715353133 @default.
- W2912342488 cites W1884775668 @default.
- W2912342488 cites W1969068726 @default.
- W2912342488 cites W1971963271 @default.
- W2912342488 cites W1972669681 @default.
- W2912342488 cites W1973509551 @default.
- W2912342488 cites W1976161617 @default.
- W2912342488 cites W1977686954 @default.
- W2912342488 cites W1981264004 @default.
- W2912342488 cites W1984515777 @default.
- W2912342488 cites W1987801135 @default.
- W2912342488 cites W1991312358 @default.
- W2912342488 cites W1993717606 @default.
- W2912342488 cites W1994158003 @default.
- W2912342488 cites W1994941258 @default.
- W2912342488 cites W1996261359 @default.
- W2912342488 cites W1998931125 @default.
- W2912342488 cites W2000093387 @default.
- W2912342488 cites W2003725769 @default.
- W2912342488 cites W2003989464 @default.
- W2912342488 cites W2007017967 @default.
- W2912342488 cites W2013189957 @default.
- W2912342488 cites W2017723190 @default.
- W2912342488 cites W2033065921 @default.
- W2912342488 cites W2039105817 @default.
- W2912342488 cites W2042792535 @default.
- W2912342488 cites W2051502925 @default.
- W2912342488 cites W2051607409 @default.
- W2912342488 cites W2057320261 @default.
- W2912342488 cites W2060774500 @default.
- W2912342488 cites W2061373768 @default.
- W2912342488 cites W2068956724 @default.
- W2912342488 cites W2074094706 @default.
- W2912342488 cites W2074696086 @default.
- W2912342488 cites W2074993972 @default.
- W2912342488 cites W2075124427 @default.
- W2912342488 cites W2077589412 @default.
- W2912342488 cites W2077593649 @default.
- W2912342488 cites W2078297434 @default.
- W2912342488 cites W2079237465 @default.
- W2912342488 cites W2084170200 @default.
- W2912342488 cites W2086048010 @default.
- W2912342488 cites W2088484156 @default.
- W2912342488 cites W2091693228 @default.
- W2912342488 cites W2094048915 @default.
- W2912342488 cites W2095190298 @default.
- W2912342488 cites W2104165437 @default.
- W2912342488 cites W2106757678 @default.
- W2912342488 cites W2136369753 @default.
- W2912342488 cites W2147242149 @default.
- W2912342488 cites W2156302255 @default.
- W2912342488 cites W2163328552 @default.
- W2912342488 cites W2163572752 @default.
- W2912342488 cites W2169755932 @default.
- W2912342488 cites W2171697319 @default.
- W2912342488 cites W2175143722 @default.
- W2912342488 cites W2201221078 @default.
- W2912342488 cites W2221703650 @default.
- W2912342488 cites W2268331518 @default.
- W2912342488 cites W2279353269 @default.
- W2912342488 cites W2291993622 @default.
- W2912342488 cites W2330492788 @default.
- W2912342488 cites W2439373218 @default.
- W2912342488 cites W2475069919 @default.
- W2912342488 cites W2475772748 @default.
- W2912342488 cites W2548560601 @default.
- W2912342488 cites W2585907644 @default.
- W2912342488 cites W2587347436 @default.
- W2912342488 cites W2597453992 @default.
- W2912342488 cites W2599148938 @default.
- W2912342488 cites W2612095153 @default.
- W2912342488 cites W2612149377 @default.
- W2912342488 cites W2736537308 @default.
- W2912342488 cites W2761146210 @default.
- W2912342488 cites W2763500568 @default.
- W2912342488 cites W2773309836 @default.
- W2912342488 cites W2776741657 @default.
- W2912342488 cites W4211049957 @default.
- W2912342488 cites W4300853571 @default.
- W2912342488 cites W617164912 @default.
- W2912342488 cites W782471358 @default.
- W2912342488 doi "https://doi.org/10.1016/j.apenergy.2019.02.056" @default.
- W2912342488 hasPublicationYear "2019" @default.