Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912345307> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2912345307 abstract "Understanding the anatomical structure of left atrial (LA) is crucial for clinical treatment of atrial fibrillation (AF). Gadolinium Enhanced Magnetic Resonance Imaging (GE-MRI) provides clarity images of LA structure. However, the most of LA structure analysis on GE-MRI studies are based on subjective manual segmentation. An efficient and objective segmentation method in GE-MRI is highly demanded. Although deep learning based method has achieved great success on some medical image segmentations, solving LA segmentation through deep learning is still an unsatisfied field. In this paper, we handle this unmet clinical need by exploring two convolutional neural networks (CNNs) structures, fully convolutional network (FCN) and U-Net, to improve the accuracy and efficiency of LA segmentation. Both models were trained and evaluated on GE-MRI dataset provided by 2018 atrial segmentation challenge. The results show that FCN-based LA automatic segmentation method achieves Dice score over 82%; U-Net method achieves Dice score over 83%." @default.
- W2912345307 created "2019-02-21" @default.
- W2912345307 creator A5012868605 @default.
- W2912345307 creator A5049558861 @default.
- W2912345307 creator A5059801255 @default.
- W2912345307 creator A5062536933 @default.
- W2912345307 date "2019-01-01" @default.
- W2912345307 modified "2023-09-23" @default.
- W2912345307 title "Deep Learning Based Method for Left Atrial Segmentation in GE-MRI" @default.
- W2912345307 cites W1901129140 @default.
- W2912345307 cites W2003590746 @default.
- W2912345307 cites W2135738182 @default.
- W2912345307 cites W2165762489 @default.
- W2912345307 cites W2274227799 @default.
- W2912345307 cites W2322371438 @default.
- W2912345307 cites W2395611524 @default.
- W2912345307 cites W2587828787 @default.
- W2912345307 cites W2614500948 @default.
- W2912345307 cites W2618276716 @default.
- W2912345307 cites W2756434166 @default.
- W2912345307 cites W2962914239 @default.
- W2912345307 cites W2963572302 @default.
- W2912345307 doi "https://doi.org/10.1007/978-3-030-12029-0_34" @default.
- W2912345307 hasPublicationYear "2019" @default.
- W2912345307 type Work @default.
- W2912345307 sameAs 2912345307 @default.
- W2912345307 citedByCount "2" @default.
- W2912345307 countsByYear W29123453072020 @default.
- W2912345307 crossrefType "book-chapter" @default.
- W2912345307 hasAuthorship W2912345307A5012868605 @default.
- W2912345307 hasAuthorship W2912345307A5049558861 @default.
- W2912345307 hasAuthorship W2912345307A5059801255 @default.
- W2912345307 hasAuthorship W2912345307A5062536933 @default.
- W2912345307 hasConcept C108583219 @default.
- W2912345307 hasConcept C124504099 @default.
- W2912345307 hasConcept C126838900 @default.
- W2912345307 hasConcept C143409427 @default.
- W2912345307 hasConcept C153180895 @default.
- W2912345307 hasConcept C154945302 @default.
- W2912345307 hasConcept C22029948 @default.
- W2912345307 hasConcept C2524010 @default.
- W2912345307 hasConcept C31972630 @default.
- W2912345307 hasConcept C33923547 @default.
- W2912345307 hasConcept C41008148 @default.
- W2912345307 hasConcept C71924100 @default.
- W2912345307 hasConcept C81363708 @default.
- W2912345307 hasConcept C89600930 @default.
- W2912345307 hasConceptScore W2912345307C108583219 @default.
- W2912345307 hasConceptScore W2912345307C124504099 @default.
- W2912345307 hasConceptScore W2912345307C126838900 @default.
- W2912345307 hasConceptScore W2912345307C143409427 @default.
- W2912345307 hasConceptScore W2912345307C153180895 @default.
- W2912345307 hasConceptScore W2912345307C154945302 @default.
- W2912345307 hasConceptScore W2912345307C22029948 @default.
- W2912345307 hasConceptScore W2912345307C2524010 @default.
- W2912345307 hasConceptScore W2912345307C31972630 @default.
- W2912345307 hasConceptScore W2912345307C33923547 @default.
- W2912345307 hasConceptScore W2912345307C41008148 @default.
- W2912345307 hasConceptScore W2912345307C71924100 @default.
- W2912345307 hasConceptScore W2912345307C81363708 @default.
- W2912345307 hasConceptScore W2912345307C89600930 @default.
- W2912345307 hasLocation W29123453071 @default.
- W2912345307 hasOpenAccess W2912345307 @default.
- W2912345307 hasPrimaryLocation W29123453071 @default.
- W2912345307 hasRelatedWork W11130107 @default.
- W2912345307 hasRelatedWork W11730785 @default.
- W2912345307 hasRelatedWork W12676508 @default.
- W2912345307 hasRelatedWork W14128562 @default.
- W2912345307 hasRelatedWork W1446482 @default.
- W2912345307 hasRelatedWork W1602910 @default.
- W2912345307 hasRelatedWork W2526871 @default.
- W2912345307 hasRelatedWork W6572092 @default.
- W2912345307 hasRelatedWork W7789328 @default.
- W2912345307 hasRelatedWork W3000238 @default.
- W2912345307 isParatext "false" @default.
- W2912345307 isRetracted "false" @default.
- W2912345307 magId "2912345307" @default.
- W2912345307 workType "book-chapter" @default.