Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912351097> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2912351097 abstract "The fundamental contribution of this thesis is Spry — a new framework for spry (agile, nimble) object/scene recognition. Spry presents a new affine invariant recognition paradigm that typically produces results at least as good as, if not better than, current state of the art algorithms while being significantly faster. To achieve this, Spry develops new technologies that stand on their own as contributions to the fields of Image Processing and Computer Vision. First, we present a novel, fully automatic, method to create box filters that achieve an excellent approximation of any arbitrary 2-D filter. We approximate the original filter by a weighted sum of individual box filters and formulate the filter approximation as an optimization problem. We present. two algorithms that can determine the optimal location of the box filters: Exhaustive Search and Directed Search. We show that both algorithms find good approximations to general fillers. Second, we develop methods that are invariant to the general affine movement by decomposing it into four distortions with geometric meaning: rotation in the object plane; rotation in the image plane; isotropic scaling; and tilt (anisotropic scaling). We develop an affine-space function that achieves invariance to all these distortions and we show that it can be computed by convolution of a filter bank with the input image. Third, we introduce iterative feature detection and description. In contrast with all relevant state of the art methods that detect features sequentially in a single pass, our method is iterative: detecting, describing, and matching features in batches. Fourth, we show that it is possible to detect and describe features iteratively without fully filtering the input image. We develop a novel greedy algorithm for iterative feature detection and description that works by randomly deciding a starting location on the scale space and then exploring the neighborhood of that location until a suitable feature point is found. We introduce a new descriptor, a modified version of the SIFT descriptor, that uses the observation information in order to be fully affine invariant. Fifth, we show that traditional methods of feature matching are not appropriate for our iterative framework and instead introduce a new feature matching algorithm based on the use of an Iterative k-Dimensional Tree. We show that this new data structure is ideal for applications in which the number of features increases at runtime and demonstrate, both theoretically and experimentally, that its performance is superior to traditional methods for matching features in growing databases. Sixth, we present three alternative approaches to the decision task. In the first approach, Nomography Estimation and Verification, we find groups of features that can be related by homographies and only report matches that agree with one of the homographies in the image. In the second approach, LASIC, we formulate the decision problem as an hypothesis test and derive the uniformly most. powerful (UMP) test that is affine invariant. We formulate the matching problem as a quadratic maximization in the space of permutation matrices and present an efficient algorithm to solve this optimization problem. In the third approach, Shapes as Empirical Distributions, we interpret the shape of an object as a probability distribution governing the location of the features of the object and interpret an image of an object as a random drawing from the shape distribution. We use Maximum Likelihood and formulate the decision problem associated with shape classification as a hypothesis test for which we characterize the performance. Finally, we demonstrate how all the above contributions conic together to create Spry. Multiple experimental results corroborate the superiority of Spry versus all current competitive state of the art algorithms in the field." @default.
- W2912351097 created "2019-02-21" @default.
- W2912351097 creator A5045861415 @default.
- W2912351097 creator A5049902435 @default.
- W2912351097 date "2011-01-01" @default.
- W2912351097 modified "2023-09-24" @default.
- W2912351097 title "Spry features" @default.
- W2912351097 hasPublicationYear "2011" @default.
- W2912351097 type Work @default.
- W2912351097 sameAs 2912351097 @default.
- W2912351097 citedByCount "0" @default.
- W2912351097 crossrefType "journal-article" @default.
- W2912351097 hasAuthorship W2912351097A5045861415 @default.
- W2912351097 hasAuthorship W2912351097A5049902435 @default.
- W2912351097 hasConcept C106131492 @default.
- W2912351097 hasConcept C11413529 @default.
- W2912351097 hasConcept C154945302 @default.
- W2912351097 hasConcept C18516315 @default.
- W2912351097 hasConcept C190470478 @default.
- W2912351097 hasConcept C207221997 @default.
- W2912351097 hasConcept C2524010 @default.
- W2912351097 hasConcept C2781238097 @default.
- W2912351097 hasConcept C31972630 @default.
- W2912351097 hasConcept C33923547 @default.
- W2912351097 hasConcept C37914503 @default.
- W2912351097 hasConcept C41008148 @default.
- W2912351097 hasConcept C64876066 @default.
- W2912351097 hasConcept C74050887 @default.
- W2912351097 hasConcept C92757383 @default.
- W2912351097 hasConcept C99844830 @default.
- W2912351097 hasConceptScore W2912351097C106131492 @default.
- W2912351097 hasConceptScore W2912351097C11413529 @default.
- W2912351097 hasConceptScore W2912351097C154945302 @default.
- W2912351097 hasConceptScore W2912351097C18516315 @default.
- W2912351097 hasConceptScore W2912351097C190470478 @default.
- W2912351097 hasConceptScore W2912351097C207221997 @default.
- W2912351097 hasConceptScore W2912351097C2524010 @default.
- W2912351097 hasConceptScore W2912351097C2781238097 @default.
- W2912351097 hasConceptScore W2912351097C31972630 @default.
- W2912351097 hasConceptScore W2912351097C33923547 @default.
- W2912351097 hasConceptScore W2912351097C37914503 @default.
- W2912351097 hasConceptScore W2912351097C41008148 @default.
- W2912351097 hasConceptScore W2912351097C64876066 @default.
- W2912351097 hasConceptScore W2912351097C74050887 @default.
- W2912351097 hasConceptScore W2912351097C92757383 @default.
- W2912351097 hasConceptScore W2912351097C99844830 @default.
- W2912351097 hasLocation W29123510971 @default.
- W2912351097 hasOpenAccess W2912351097 @default.
- W2912351097 hasPrimaryLocation W29123510971 @default.
- W2912351097 hasRelatedWork W122133779 @default.
- W2912351097 hasRelatedWork W1517794406 @default.
- W2912351097 hasRelatedWork W1538240523 @default.
- W2912351097 hasRelatedWork W1540484190 @default.
- W2912351097 hasRelatedWork W1590311399 @default.
- W2912351097 hasRelatedWork W1795043745 @default.
- W2912351097 hasRelatedWork W185791870 @default.
- W2912351097 hasRelatedWork W1897530620 @default.
- W2912351097 hasRelatedWork W1940260009 @default.
- W2912351097 hasRelatedWork W2130834344 @default.
- W2912351097 hasRelatedWork W2150138094 @default.
- W2912351097 hasRelatedWork W2162443997 @default.
- W2912351097 hasRelatedWork W2186884555 @default.
- W2912351097 hasRelatedWork W2261505283 @default.
- W2912351097 hasRelatedWork W2579022742 @default.
- W2912351097 hasRelatedWork W2604893649 @default.
- W2912351097 hasRelatedWork W2913477269 @default.
- W2912351097 hasRelatedWork W2971027810 @default.
- W2912351097 hasRelatedWork W3100894828 @default.
- W2912351097 hasRelatedWork W848837088 @default.
- W2912351097 isParatext "false" @default.
- W2912351097 isRetracted "false" @default.
- W2912351097 magId "2912351097" @default.
- W2912351097 workType "article" @default.