Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912351279> ?p ?o ?g. }
- W2912351279 abstract "In this paper we study the use of Machine Learning techniques to exploit kinematic information in VH, the production of a Higgs in association with a massive vector boson. We parametrise the effect of new physics in terms of the SMEFT framework. We find that the use of a shallow neural network allows us to dramatically increase the sensitivity to deviations in VH respect to previous estimates. We also discuss the relation between the usual measures of performance in Machine Learning, such as AUC or accuracy, with the more adept measure of Asimov significance. This relation is particularly relevant when parametrising systematic uncertainties. Our results show the potential of incorporating Machine Learning techniques to the SMEFT studies using the current datasets." @default.
- W2912351279 created "2019-02-21" @default.
- W2912351279 creator A5023269417 @default.
- W2912351279 creator A5033710814 @default.
- W2912351279 creator A5052939084 @default.
- W2912351279 date "2019-08-30" @default.
- W2912351279 modified "2023-09-27" @default.
- W2912351279 title "Exploring the standard model EFT in <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>V</mml:mi><mml:mi>H</mml:mi></mml:math> production with machine learning" @default.
- W2912351279 cites W1921254499 @default.
- W2912351279 cites W1975211291 @default.
- W2912351279 cites W1978738335 @default.
- W2912351279 cites W2023309614 @default.
- W2912351279 cites W2040035653 @default.
- W2912351279 cites W2057766171 @default.
- W2912351279 cites W2059974380 @default.
- W2912351279 cites W2075111311 @default.
- W2912351279 cites W2103734246 @default.
- W2912351279 cites W2158325186 @default.
- W2912351279 cites W2158454372 @default.
- W2912351279 cites W2165342658 @default.
- W2912351279 cites W2610044559 @default.
- W2912351279 cites W2771772523 @default.
- W2912351279 cites W2791850305 @default.
- W2912351279 cites W2798398359 @default.
- W2912351279 cites W2799038815 @default.
- W2912351279 cites W2810597887 @default.
- W2912351279 cites W2886988616 @default.
- W2912351279 cites W2889894741 @default.
- W2912351279 cites W2891076785 @default.
- W2912351279 cites W2903249894 @default.
- W2912351279 cites W2948715820 @default.
- W2912351279 cites W3099883867 @default.
- W2912351279 cites W3101164173 @default.
- W2912351279 cites W3102134862 @default.
- W2912351279 cites W3102719046 @default.
- W2912351279 cites W3103722330 @default.
- W2912351279 cites W3104523814 @default.
- W2912351279 cites W3105797459 @default.
- W2912351279 cites W3106181531 @default.
- W2912351279 cites W3106317362 @default.
- W2912351279 cites W3121642222 @default.
- W2912351279 doi "https://doi.org/10.1103/physrevd.100.035040" @default.
- W2912351279 hasPublicationYear "2019" @default.
- W2912351279 type Work @default.
- W2912351279 sameAs 2912351279 @default.
- W2912351279 citedByCount "32" @default.
- W2912351279 countsByYear W29123512792019 @default.
- W2912351279 countsByYear W29123512792020 @default.
- W2912351279 countsByYear W29123512792021 @default.
- W2912351279 countsByYear W29123512792022 @default.
- W2912351279 countsByYear W29123512792023 @default.
- W2912351279 crossrefType "journal-article" @default.
- W2912351279 hasAuthorship W2912351279A5023269417 @default.
- W2912351279 hasAuthorship W2912351279A5033710814 @default.
- W2912351279 hasAuthorship W2912351279A5052939084 @default.
- W2912351279 hasBestOaLocation W29123512791 @default.
- W2912351279 hasConcept C109214941 @default.
- W2912351279 hasConcept C11413529 @default.
- W2912351279 hasConcept C119857082 @default.
- W2912351279 hasConcept C121332964 @default.
- W2912351279 hasConcept C12267149 @default.
- W2912351279 hasConcept C124101348 @default.
- W2912351279 hasConcept C127413603 @default.
- W2912351279 hasConcept C139719470 @default.
- W2912351279 hasConcept C154945302 @default.
- W2912351279 hasConcept C158129726 @default.
- W2912351279 hasConcept C162324750 @default.
- W2912351279 hasConcept C165696696 @default.
- W2912351279 hasConcept C21200559 @default.
- W2912351279 hasConcept C24326235 @default.
- W2912351279 hasConcept C25343380 @default.
- W2912351279 hasConcept C2778348673 @default.
- W2912351279 hasConcept C38652104 @default.
- W2912351279 hasConcept C41008148 @default.
- W2912351279 hasConcept C50644808 @default.
- W2912351279 hasConceptScore W2912351279C109214941 @default.
- W2912351279 hasConceptScore W2912351279C11413529 @default.
- W2912351279 hasConceptScore W2912351279C119857082 @default.
- W2912351279 hasConceptScore W2912351279C121332964 @default.
- W2912351279 hasConceptScore W2912351279C12267149 @default.
- W2912351279 hasConceptScore W2912351279C124101348 @default.
- W2912351279 hasConceptScore W2912351279C127413603 @default.
- W2912351279 hasConceptScore W2912351279C139719470 @default.
- W2912351279 hasConceptScore W2912351279C154945302 @default.
- W2912351279 hasConceptScore W2912351279C158129726 @default.
- W2912351279 hasConceptScore W2912351279C162324750 @default.
- W2912351279 hasConceptScore W2912351279C165696696 @default.
- W2912351279 hasConceptScore W2912351279C21200559 @default.
- W2912351279 hasConceptScore W2912351279C24326235 @default.
- W2912351279 hasConceptScore W2912351279C25343380 @default.
- W2912351279 hasConceptScore W2912351279C2778348673 @default.
- W2912351279 hasConceptScore W2912351279C38652104 @default.
- W2912351279 hasConceptScore W2912351279C41008148 @default.
- W2912351279 hasConceptScore W2912351279C50644808 @default.
- W2912351279 hasFunder F4320320006 @default.
- W2912351279 hasFunder F4320321543 @default.
- W2912351279 hasFunder F4320334632 @default.
- W2912351279 hasIssue "3" @default.
- W2912351279 hasLocation W29123512791 @default.
- W2912351279 hasLocation W29123512792 @default.