Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912351620> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2912351620 abstract "Accurate, real-time access to key performance indicators (KPIs) is critical to the overall performance of industrial processes. However, in many cases, it is difficult to obtain accurate and timely measurements, due to time delays or external disturbances in industrial processes. Soft sensors are one solution that can provide the necessary process information. This paper proposes a new approach for soft sensor design using Markov random fields (MRF). In which, a Gaussian mixture model (GMM) is firstly used to approximate the joint probability distribution in the soft sensor model, then the expectation maximization (EM) algorithm estimates the GMM parameters. Using this approach, a soft sensor is developed using industrial data for the alumina concentration process in the aluminum electrolysis industry, to show our proposed approach provides accurate estimation of the alumina concentration." @default.
- W2912351620 created "2019-02-21" @default.
- W2912351620 creator A5001471659 @default.
- W2912351620 creator A5010776860 @default.
- W2912351620 creator A5027473814 @default.
- W2912351620 creator A5090989509 @default.
- W2912351620 date "2018-11-01" @default.
- W2912351620 modified "2023-10-01" @default.
- W2912351620 title "Development and Industrial Application of a Soft Sensor using Markov Random Fields" @default.
- W2912351620 cites W175351148 @default.
- W2912351620 cites W1992546074 @default.
- W2912351620 cites W2000651380 @default.
- W2912351620 cites W2009785290 @default.
- W2912351620 cites W2010887332 @default.
- W2912351620 cites W2024281799 @default.
- W2912351620 cites W2067826479 @default.
- W2912351620 cites W2136573752 @default.
- W2912351620 cites W2145039203 @default.
- W2912351620 cites W2335899954 @default.
- W2912351620 cites W2343246112 @default.
- W2912351620 cites W2581586343 @default.
- W2912351620 cites W2739791970 @default.
- W2912351620 cites W2753418768 @default.
- W2912351620 cites W2768613868 @default.
- W2912351620 cites W2781933885 @default.
- W2912351620 doi "https://doi.org/10.1109/cac.2018.8623074" @default.
- W2912351620 hasPublicationYear "2018" @default.
- W2912351620 type Work @default.
- W2912351620 sameAs 2912351620 @default.
- W2912351620 citedByCount "1" @default.
- W2912351620 countsByYear W29123516202023 @default.
- W2912351620 crossrefType "proceedings-article" @default.
- W2912351620 hasAuthorship W2912351620A5001471659 @default.
- W2912351620 hasAuthorship W2912351620A5010776860 @default.
- W2912351620 hasAuthorship W2912351620A5027473814 @default.
- W2912351620 hasAuthorship W2912351620A5090989509 @default.
- W2912351620 hasConcept C105795698 @default.
- W2912351620 hasConcept C111919701 @default.
- W2912351620 hasConcept C11413529 @default.
- W2912351620 hasConcept C115575686 @default.
- W2912351620 hasConcept C119857082 @default.
- W2912351620 hasConcept C121332964 @default.
- W2912351620 hasConcept C124504099 @default.
- W2912351620 hasConcept C126255220 @default.
- W2912351620 hasConcept C154945302 @default.
- W2912351620 hasConcept C159886148 @default.
- W2912351620 hasConcept C163716315 @default.
- W2912351620 hasConcept C23224414 @default.
- W2912351620 hasConcept C2776330181 @default.
- W2912351620 hasConcept C2778045648 @default.
- W2912351620 hasConcept C33923547 @default.
- W2912351620 hasConcept C41008148 @default.
- W2912351620 hasConcept C61224824 @default.
- W2912351620 hasConcept C61326573 @default.
- W2912351620 hasConcept C62520636 @default.
- W2912351620 hasConcept C8272713 @default.
- W2912351620 hasConcept C89600930 @default.
- W2912351620 hasConcept C98045186 @default.
- W2912351620 hasConcept C98763669 @default.
- W2912351620 hasConceptScore W2912351620C105795698 @default.
- W2912351620 hasConceptScore W2912351620C111919701 @default.
- W2912351620 hasConceptScore W2912351620C11413529 @default.
- W2912351620 hasConceptScore W2912351620C115575686 @default.
- W2912351620 hasConceptScore W2912351620C119857082 @default.
- W2912351620 hasConceptScore W2912351620C121332964 @default.
- W2912351620 hasConceptScore W2912351620C124504099 @default.
- W2912351620 hasConceptScore W2912351620C126255220 @default.
- W2912351620 hasConceptScore W2912351620C154945302 @default.
- W2912351620 hasConceptScore W2912351620C159886148 @default.
- W2912351620 hasConceptScore W2912351620C163716315 @default.
- W2912351620 hasConceptScore W2912351620C23224414 @default.
- W2912351620 hasConceptScore W2912351620C2776330181 @default.
- W2912351620 hasConceptScore W2912351620C2778045648 @default.
- W2912351620 hasConceptScore W2912351620C33923547 @default.
- W2912351620 hasConceptScore W2912351620C41008148 @default.
- W2912351620 hasConceptScore W2912351620C61224824 @default.
- W2912351620 hasConceptScore W2912351620C61326573 @default.
- W2912351620 hasConceptScore W2912351620C62520636 @default.
- W2912351620 hasConceptScore W2912351620C8272713 @default.
- W2912351620 hasConceptScore W2912351620C89600930 @default.
- W2912351620 hasConceptScore W2912351620C98045186 @default.
- W2912351620 hasConceptScore W2912351620C98763669 @default.
- W2912351620 hasLocation W29123516201 @default.
- W2912351620 hasOpenAccess W2912351620 @default.
- W2912351620 hasPrimaryLocation W29123516201 @default.
- W2912351620 hasRelatedWork W1511076251 @default.
- W2912351620 hasRelatedWork W2097331808 @default.
- W2912351620 hasRelatedWork W2097355209 @default.
- W2912351620 hasRelatedWork W2112634534 @default.
- W2912351620 hasRelatedWork W2159454237 @default.
- W2912351620 hasRelatedWork W2168237838 @default.
- W2912351620 hasRelatedWork W2385781872 @default.
- W2912351620 hasRelatedWork W2800934502 @default.
- W2912351620 hasRelatedWork W2912351620 @default.
- W2912351620 hasRelatedWork W851016324 @default.
- W2912351620 isParatext "false" @default.
- W2912351620 isRetracted "false" @default.
- W2912351620 magId "2912351620" @default.
- W2912351620 workType "article" @default.