Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912352416> ?p ?o ?g. }
- W2912352416 endingPage "125" @default.
- W2912352416 startingPage "125" @default.
- W2912352416 abstract "Tree diameter distributions are essential for the calculation of stem volume and biomass, as well as simulation of growth and yield and to understand timber assortments. Accurate and reliable prediction of tree diameter distributions is critical for optimizing forest structure compositions, scheduling silvicultural operations and promoting sustainable management. In this study, we investigated the potential of airborne Light Detection and Ranging (LiDAR) data for predicting tree diameter distributions using a bimodal finite mixture model (FMM) and a multimodal k-nearest neighbor (KNN) model (compared to the unimodal Weibull model (UWM)) over a subtropical planted forest in southern China. To do so, we first evaluated the capability of various LiDAR predictions (i.e., the bimodality coefficient (BC) and Lorenz-based indicators) to stratify forest structural types into unimodal and multimodal stands. Once the best LiDAR prediction for the differentiation was determined, the parameters of UWM (in non-specific and species-specific models) and FMM (in structure-specific models) were estimated by LiDAR-derived metrics and the tree diameter distributions of stands were generated by the estimated LiDAR parameters. When KNN was applied for constructing diameter distributions, optimal KNN strategies, including number of neighbors k, response configurations and imputation methods (i.e., Most Similar Neighbor (MSN) and Random Forest (RF)) for different species were heuristically determined. Finally, the predictive performance of estimated LiDAR the parameters of UWM, FMM and KNN for predicting diameter distributions were assessed. The results showed that LiDAR-predicted Lorenz-based indicators performed best for differentiation. Parameters of UWM and FMM were predicted well and the species-specific models had higher accuracies than the non-specific models. Overall, RF imputation from KNN with an optimal response set (i.e., DBH) were was stable than MSN imputation when k = 5 neighbors. In addition, the inclusion of bimodal FMM for differentiated all plots generally produced a more accurate result (Mean eR = 40.85, Mean eP = 0.20) than multimodal KNN (Mean eR = 52.19, Mean eP = 0.26), whereas the UWM produced the lowest performance (Mean eR = 52.31, Mean eP = 0.26). This study demonstrated the benefits of multimodal models with LiDAR for estimating diameter distributions for supporting forest inventory and sustainable forest management in subtropical planted forests." @default.
- W2912352416 created "2019-02-21" @default.
- W2912352416 creator A5010745625 @default.
- W2912352416 creator A5023192257 @default.
- W2912352416 creator A5025553015 @default.
- W2912352416 creator A5083073196 @default.
- W2912352416 creator A5088404682 @default.
- W2912352416 creator A5088664989 @default.
- W2912352416 date "2019-02-04" @default.
- W2912352416 modified "2023-09-28" @default.
- W2912352416 title "Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests" @default.
- W2912352416 cites W1452467712 @default.
- W2912352416 cites W1496824059 @default.
- W2912352416 cites W1572690165 @default.
- W2912352416 cites W1933564286 @default.
- W2912352416 cites W1939619463 @default.
- W2912352416 cites W1970113371 @default.
- W2912352416 cites W1971456718 @default.
- W2912352416 cites W1973754976 @default.
- W2912352416 cites W1975417404 @default.
- W2912352416 cites W1977109346 @default.
- W2912352416 cites W1977921292 @default.
- W2912352416 cites W1979293562 @default.
- W2912352416 cites W1984191878 @default.
- W2912352416 cites W1988246220 @default.
- W2912352416 cites W1996263757 @default.
- W2912352416 cites W2006286431 @default.
- W2912352416 cites W2008514847 @default.
- W2912352416 cites W2010434246 @default.
- W2912352416 cites W2015160156 @default.
- W2912352416 cites W2015306388 @default.
- W2912352416 cites W2019126302 @default.
- W2912352416 cites W2022001140 @default.
- W2912352416 cites W2022872731 @default.
- W2912352416 cites W2028083984 @default.
- W2912352416 cites W2028901390 @default.
- W2912352416 cites W2030364282 @default.
- W2912352416 cites W2032581192 @default.
- W2912352416 cites W2033820375 @default.
- W2912352416 cites W2040647925 @default.
- W2912352416 cites W2043788930 @default.
- W2912352416 cites W2045013307 @default.
- W2912352416 cites W2050271123 @default.
- W2912352416 cites W2053902032 @default.
- W2912352416 cites W2054559550 @default.
- W2912352416 cites W2056128477 @default.
- W2912352416 cites W2061969208 @default.
- W2912352416 cites W2071215415 @default.
- W2912352416 cites W2072334158 @default.
- W2912352416 cites W2072474981 @default.
- W2912352416 cites W2075664745 @default.
- W2912352416 cites W2085547171 @default.
- W2912352416 cites W2085741981 @default.
- W2912352416 cites W2088385352 @default.
- W2912352416 cites W2093111773 @default.
- W2912352416 cites W2103754106 @default.
- W2912352416 cites W2105826543 @default.
- W2912352416 cites W2108525191 @default.
- W2912352416 cites W2111078849 @default.
- W2912352416 cites W2113104361 @default.
- W2912352416 cites W2119264734 @default.
- W2912352416 cites W2125377929 @default.
- W2912352416 cites W2126080009 @default.
- W2912352416 cites W2131472136 @default.
- W2912352416 cites W2133374292 @default.
- W2912352416 cites W2135646747 @default.
- W2912352416 cites W2142635246 @default.
- W2912352416 cites W2148523855 @default.
- W2912352416 cites W2153534477 @default.
- W2912352416 cites W2159470716 @default.
- W2912352416 cites W2162298841 @default.
- W2912352416 cites W2170927092 @default.
- W2912352416 cites W2195880011 @default.
- W2912352416 cites W2260602653 @default.
- W2912352416 cites W2261059368 @default.
- W2912352416 cites W2266591399 @default.
- W2912352416 cites W2316799542 @default.
- W2912352416 cites W2318182825 @default.
- W2912352416 cites W2322716129 @default.
- W2912352416 cites W2333389735 @default.
- W2912352416 cites W2383860596 @default.
- W2912352416 cites W2432002523 @default.
- W2912352416 cites W2482464033 @default.
- W2912352416 cites W2541502989 @default.
- W2912352416 cites W2555003865 @default.
- W2912352416 cites W2569920929 @default.
- W2912352416 cites W2734852028 @default.
- W2912352416 cites W2751581825 @default.
- W2912352416 cites W2754182341 @default.
- W2912352416 cites W2758203395 @default.
- W2912352416 cites W2767993599 @default.
- W2912352416 cites W2769826201 @default.
- W2912352416 cites W2774212387 @default.
- W2912352416 cites W2788356053 @default.
- W2912352416 cites W2790767922 @default.
- W2912352416 cites W2803005530 @default.
- W2912352416 cites W2897934480 @default.
- W2912352416 cites W2899895642 @default.