Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912353157> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2912353157 abstract "Hyperspectral data has a strong ability in information expression. In this paper, we will extract a variety of spectral features and Multi-spatial-dominated features. In order to make better use of the relationship between spatial neighborhood pixels, we introduce spatial features with two different window scales, which can be give us more abundant spatial information, and then we used a novel framework to merge this extracted features. This deep learning framework is made of sparse component analysis (SPCA), deep learning architecture, and logistic regression. For hyperspectral image classification, stacked autoencoders is an efficient deep learning framework. In detail, compared with principle component analysis (PCA), SPCA has a better effect on dimensionality reduction of nonlinear data, especially for hyperspectral data. The public data set Pavia Centre scene and Pavia University scene are used to test our proposed algorithm. Experimental results demonstrate that the proposed approach outperforms the compared. It also shows that the hyperspectral data classification based on deep learning has an excellent application prospect." @default.
- W2912353157 created "2019-02-21" @default.
- W2912353157 creator A5032122445 @default.
- W2912353157 creator A5041406343 @default.
- W2912353157 creator A5061671556 @default.
- W2912353157 creator A5063253432 @default.
- W2912353157 creator A5064860911 @default.
- W2912353157 date "2018-08-01" @default.
- W2912353157 modified "2023-09-27" @default.
- W2912353157 title "Spectral and Multi-Spatial-Feature Based Deep Learning for Hyperspectral Remote Sensing Image Classification" @default.
- W2912353157 doi "https://doi.org/10.1109/rcar.2018.8621652" @default.
- W2912353157 hasPublicationYear "2018" @default.
- W2912353157 type Work @default.
- W2912353157 sameAs 2912353157 @default.
- W2912353157 citedByCount "0" @default.
- W2912353157 crossrefType "proceedings-article" @default.
- W2912353157 hasAuthorship W2912353157A5032122445 @default.
- W2912353157 hasAuthorship W2912353157A5041406343 @default.
- W2912353157 hasAuthorship W2912353157A5061671556 @default.
- W2912353157 hasAuthorship W2912353157A5063253432 @default.
- W2912353157 hasAuthorship W2912353157A5064860911 @default.
- W2912353157 hasConcept C108583219 @default.
- W2912353157 hasConcept C111030470 @default.
- W2912353157 hasConcept C153180895 @default.
- W2912353157 hasConcept C154945302 @default.
- W2912353157 hasConcept C159078339 @default.
- W2912353157 hasConcept C159620131 @default.
- W2912353157 hasConcept C160633673 @default.
- W2912353157 hasConcept C205649164 @default.
- W2912353157 hasConcept C27438332 @default.
- W2912353157 hasConcept C41008148 @default.
- W2912353157 hasConcept C52622490 @default.
- W2912353157 hasConcept C62649853 @default.
- W2912353157 hasConcept C70518039 @default.
- W2912353157 hasConceptScore W2912353157C108583219 @default.
- W2912353157 hasConceptScore W2912353157C111030470 @default.
- W2912353157 hasConceptScore W2912353157C153180895 @default.
- W2912353157 hasConceptScore W2912353157C154945302 @default.
- W2912353157 hasConceptScore W2912353157C159078339 @default.
- W2912353157 hasConceptScore W2912353157C159620131 @default.
- W2912353157 hasConceptScore W2912353157C160633673 @default.
- W2912353157 hasConceptScore W2912353157C205649164 @default.
- W2912353157 hasConceptScore W2912353157C27438332 @default.
- W2912353157 hasConceptScore W2912353157C41008148 @default.
- W2912353157 hasConceptScore W2912353157C52622490 @default.
- W2912353157 hasConceptScore W2912353157C62649853 @default.
- W2912353157 hasConceptScore W2912353157C70518039 @default.
- W2912353157 hasLocation W29123531571 @default.
- W2912353157 hasOpenAccess W2912353157 @default.
- W2912353157 hasPrimaryLocation W29123531571 @default.
- W2912353157 hasRelatedWork W2108218391 @default.
- W2912353157 hasRelatedWork W2134740107 @default.
- W2912353157 hasRelatedWork W2765997769 @default.
- W2912353157 hasRelatedWork W2809374289 @default.
- W2912353157 hasRelatedWork W2911736479 @default.
- W2912353157 hasRelatedWork W2912353157 @default.
- W2912353157 hasRelatedWork W3154145980 @default.
- W2912353157 hasRelatedWork W3211035526 @default.
- W2912353157 hasRelatedWork W4210817555 @default.
- W2912353157 hasRelatedWork W4214895820 @default.
- W2912353157 isParatext "false" @default.
- W2912353157 isRetracted "false" @default.
- W2912353157 magId "2912353157" @default.
- W2912353157 workType "article" @default.