Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912353237> ?p ?o ?g. }
- W2912353237 abstract "The selection of hybrids is an essential step in maize breeding. However, evaluating a large number of hybrids in field trials can be extremely costly. However, genomic models can be used to predict the expected performance of un-tested genotypes. Bayesian models offer a very flexible framework for hybrid prediction. The Bayesian methodology can be used with parametric and semi-parametric assumptions for additive and non-additive effects. Furthermore, samples from the posterior distribution of Bayesian models can be used to estimate the variance due to general and specific combining abilities even in cases where additive and non-additive effects are not mutually orthogonal. Also, the use of Bayesian models for analysis and prediction of hybrid performance has remained fairly limited. We provided an overview of Bayesian parametric and semi-parametric genomic models for prediction of agronomic traits in maize hybrids and discussed how these models can be used to decompose the genotypic variance into components due to general and specific combining ability. We applied the methodology to data from 906 single cross tropical maize hybrids derived from a convergent population. Our results show that: (1) non-additive effects make a sizable contribution to the genetic variance of grain yield; however, the relative importance of non-additive effects was much smaller for ear and plant height; (2) genomic prediction can achieve relatively high accuracy in predicting phenotypes of un-tested hybrids and in pre-screening. Genomic prediction can be a useful tool in pre-screening of hybrids and could contribute to the improvement of the efficiency and efficacy of maize hybrids breeding programs. The Bayesian framework offers a great deal of flexibility in modeling hybrid performance. The methodology can be used to estimate important genetic parameters and render predictions of the expected hybrid performance as well measures of uncertainty about such predictions." @default.
- W2912353237 created "2019-02-21" @default.
- W2912353237 creator A5008351488 @default.
- W2912353237 creator A5062321482 @default.
- W2912353237 creator A5063947394 @default.
- W2912353237 creator A5072849005 @default.
- W2912353237 creator A5086793435 @default.
- W2912353237 creator A5089303411 @default.
- W2912353237 date "2019-02-07" @default.
- W2912353237 modified "2023-09-30" @default.
- W2912353237 title "Bayesian analysis and prediction of hybrid performance" @default.
- W2912353237 cites W1928998639 @default.
- W2912353237 cites W1967455686 @default.
- W2912353237 cites W1970149620 @default.
- W2912353237 cites W1970968485 @default.
- W2912353237 cites W1976575447 @default.
- W2912353237 cites W1982553420 @default.
- W2912353237 cites W1988502850 @default.
- W2912353237 cites W1996704045 @default.
- W2912353237 cites W2001675230 @default.
- W2912353237 cites W2005393148 @default.
- W2912353237 cites W2006026084 @default.
- W2912353237 cites W2018457274 @default.
- W2912353237 cites W2023673366 @default.
- W2912353237 cites W2031525750 @default.
- W2912353237 cites W2034433729 @default.
- W2912353237 cites W2048684300 @default.
- W2912353237 cites W2053848388 @default.
- W2912353237 cites W2067715889 @default.
- W2912353237 cites W2069373425 @default.
- W2912353237 cites W2079539454 @default.
- W2912353237 cites W2093093735 @default.
- W2912353237 cites W2095276041 @default.
- W2912353237 cites W2102087753 @default.
- W2912353237 cites W2102273814 @default.
- W2912353237 cites W2106418989 @default.
- W2912353237 cites W2107270799 @default.
- W2912353237 cites W2107438842 @default.
- W2912353237 cites W2109349581 @default.
- W2912353237 cites W2127843966 @default.
- W2912353237 cites W2128343509 @default.
- W2912353237 cites W2130060388 @default.
- W2912353237 cites W2132254330 @default.
- W2912353237 cites W2141099825 @default.
- W2912353237 cites W2141693972 @default.
- W2912353237 cites W2144504271 @default.
- W2912353237 cites W2145174267 @default.
- W2912353237 cites W2151391832 @default.
- W2912353237 cites W2154978106 @default.
- W2912353237 cites W2155143751 @default.
- W2912353237 cites W2159755944 @default.
- W2912353237 cites W2168952261 @default.
- W2912353237 cites W2271902495 @default.
- W2912353237 cites W2287077771 @default.
- W2912353237 cites W2344305798 @default.
- W2912353237 cites W2440379560 @default.
- W2912353237 cites W2440965447 @default.
- W2912353237 cites W2467418041 @default.
- W2912353237 cites W2470083119 @default.
- W2912353237 cites W2514325896 @default.
- W2912353237 cites W2529536219 @default.
- W2912353237 cites W2550568080 @default.
- W2912353237 cites W2557414177 @default.
- W2912353237 cites W2567594943 @default.
- W2912353237 cites W2594937729 @default.
- W2912353237 cites W2599041083 @default.
- W2912353237 cites W2607207785 @default.
- W2912353237 cites W2608691562 @default.
- W2912353237 cites W2614655735 @default.
- W2912353237 cites W2615885285 @default.
- W2912353237 cites W2624092183 @default.
- W2912353237 cites W2953325546 @default.
- W2912353237 cites W295887102 @default.
- W2912353237 doi "https://doi.org/10.1186/s13007-019-0388-x" @default.
- W2912353237 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6366084" @default.
- W2912353237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30774704" @default.
- W2912353237 hasPublicationYear "2019" @default.
- W2912353237 type Work @default.
- W2912353237 sameAs 2912353237 @default.
- W2912353237 citedByCount "38" @default.
- W2912353237 countsByYear W29123532372019 @default.
- W2912353237 countsByYear W29123532372020 @default.
- W2912353237 countsByYear W29123532372021 @default.
- W2912353237 countsByYear W29123532372022 @default.
- W2912353237 countsByYear W29123532372023 @default.
- W2912353237 crossrefType "journal-article" @default.
- W2912353237 hasAuthorship W2912353237A5008351488 @default.
- W2912353237 hasAuthorship W2912353237A5062321482 @default.
- W2912353237 hasAuthorship W2912353237A5063947394 @default.
- W2912353237 hasAuthorship W2912353237A5072849005 @default.
- W2912353237 hasAuthorship W2912353237A5086793435 @default.
- W2912353237 hasAuthorship W2912353237A5089303411 @default.
- W2912353237 hasBestOaLocation W29123532371 @default.
- W2912353237 hasConcept C104317684 @default.
- W2912353237 hasConcept C105795698 @default.
- W2912353237 hasConcept C107673813 @default.
- W2912353237 hasConcept C117251300 @default.
- W2912353237 hasConcept C119857082 @default.
- W2912353237 hasConcept C121955636 @default.
- W2912353237 hasConcept C135763542 @default.