Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912361013> ?p ?o ?g. }
- W2912361013 endingPage "196" @default.
- W2912361013 startingPage "196" @default.
- W2912361013 abstract "There is a growing demand for detailed and accurate landslide maps and inventories around the globe, but particularly in hazard-prone regions such as the Himalayas. Most standard mapping methods require expert knowledge, supervision and fieldwork. In this study, we use optical data from the Rapid Eye satellite and topographic factors to analyze the potential of machine learning methods, i.e., artificial neural network (ANN), support vector machines (SVM) and random forest (RF), and different deep-learning convolution neural networks (CNNs) for landslide detection. We use two training zones and one test zone to independently evaluate the performance of different methods in the highly landslide-prone Rasuwa district in Nepal. Twenty different maps are created using ANN, SVM and RF and different CNN instantiations and are compared against the results of extensive fieldwork through a mean intersection-over-union (mIOU) and other common metrics. This accuracy assessment yields the best result of 78.26% mIOU for a small window size CNN, which uses spectral information only. The additional information from a 5 m digital elevation model helps to discriminate between human settlements and landslides but does not improve the overall classification accuracy. CNNs do not automatically outperform ANN, SVM and RF, although this is sometimes claimed. Rather, the performance of CNNs strongly depends on their design, i.e., layer depth, input window sizes and training strategies. Here, we conclude that the CNN method is still in its infancy as most researchers will either use predefined parameters in solutions like Google TensorFlow or will apply different settings in a trial-and-error manner. Nevertheless, deep-learning can improve landslide mapping in the future if the effects of the different designs are better understood, enough training samples exist, and the effects of augmentation strategies to artificially increase the number of existing samples are better understood." @default.
- W2912361013 created "2019-02-21" @default.
- W2912361013 creator A5010457221 @default.
- W2912361013 creator A5033273961 @default.
- W2912361013 creator A5045667203 @default.
- W2912361013 creator A5056842687 @default.
- W2912361013 creator A5084255329 @default.
- W2912361013 creator A5089503857 @default.
- W2912361013 date "2019-01-20" @default.
- W2912361013 modified "2023-10-11" @default.
- W2912361013 title "Evaluation of Different Machine Learning Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection" @default.
- W2912361013 cites W1984792953 @default.
- W2912361013 cites W2005802434 @default.
- W2912361013 cites W2008089655 @default.
- W2912361013 cites W2012118327 @default.
- W2912361013 cites W2018459837 @default.
- W2912361013 cites W2045076638 @default.
- W2912361013 cites W2050599078 @default.
- W2912361013 cites W2058082754 @default.
- W2912361013 cites W2074872086 @default.
- W2912361013 cites W2079019836 @default.
- W2912361013 cites W2081345111 @default.
- W2912361013 cites W2082081125 @default.
- W2912361013 cites W2088730795 @default.
- W2912361013 cites W2117573377 @default.
- W2912361013 cites W2164684831 @default.
- W2912361013 cites W2170535121 @default.
- W2912361013 cites W2178987275 @default.
- W2912361013 cites W2269516007 @default.
- W2912361013 cites W2312122167 @default.
- W2912361013 cites W2333230539 @default.
- W2912361013 cites W2334806815 @default.
- W2912361013 cites W2341130385 @default.
- W2912361013 cites W2342016430 @default.
- W2912361013 cites W2534576342 @default.
- W2912361013 cites W2538244214 @default.
- W2912361013 cites W2567326027 @default.
- W2912361013 cites W2588237346 @default.
- W2912361013 cites W2599500356 @default.
- W2912361013 cites W2614438169 @default.
- W2912361013 cites W2624848721 @default.
- W2912361013 cites W2729097084 @default.
- W2912361013 cites W2730104310 @default.
- W2912361013 cites W2732014394 @default.
- W2912361013 cites W2735810309 @default.
- W2912361013 cites W2769480667 @default.
- W2912361013 cites W2782522152 @default.
- W2912361013 cites W2809758875 @default.
- W2912361013 cites W2810004461 @default.
- W2912361013 cites W2884821113 @default.
- W2912361013 cites W2888067248 @default.
- W2912361013 cites W2888231268 @default.
- W2912361013 cites W2893932676 @default.
- W2912361013 cites W2894859748 @default.
- W2912361013 cites W2897668753 @default.
- W2912361013 cites W2898946526 @default.
- W2912361013 cites W2901867974 @default.
- W2912361013 cites W2911964244 @default.
- W2912361013 doi "https://doi.org/10.3390/rs11020196" @default.
- W2912361013 hasPublicationYear "2019" @default.
- W2912361013 type Work @default.
- W2912361013 sameAs 2912361013 @default.
- W2912361013 citedByCount "437" @default.
- W2912361013 countsByYear W29123610132019 @default.
- W2912361013 countsByYear W29123610132020 @default.
- W2912361013 countsByYear W29123610132021 @default.
- W2912361013 countsByYear W29123610132022 @default.
- W2912361013 countsByYear W29123610132023 @default.
- W2912361013 crossrefType "journal-article" @default.
- W2912361013 hasAuthorship W2912361013A5010457221 @default.
- W2912361013 hasAuthorship W2912361013A5033273961 @default.
- W2912361013 hasAuthorship W2912361013A5045667203 @default.
- W2912361013 hasAuthorship W2912361013A5056842687 @default.
- W2912361013 hasAuthorship W2912361013A5084255329 @default.
- W2912361013 hasAuthorship W2912361013A5089503857 @default.
- W2912361013 hasBestOaLocation W29123610131 @default.
- W2912361013 hasConcept C108583219 @default.
- W2912361013 hasConcept C119857082 @default.
- W2912361013 hasConcept C12267149 @default.
- W2912361013 hasConcept C127413603 @default.
- W2912361013 hasConcept C153180895 @default.
- W2912361013 hasConcept C154945302 @default.
- W2912361013 hasConcept C169258074 @default.
- W2912361013 hasConcept C186295008 @default.
- W2912361013 hasConcept C187320778 @default.
- W2912361013 hasConcept C205649164 @default.
- W2912361013 hasConcept C41008148 @default.
- W2912361013 hasConcept C50644808 @default.
- W2912361013 hasConcept C58640448 @default.
- W2912361013 hasConcept C64543145 @default.
- W2912361013 hasConcept C81363708 @default.
- W2912361013 hasConceptScore W2912361013C108583219 @default.
- W2912361013 hasConceptScore W2912361013C119857082 @default.
- W2912361013 hasConceptScore W2912361013C12267149 @default.
- W2912361013 hasConceptScore W2912361013C127413603 @default.
- W2912361013 hasConceptScore W2912361013C153180895 @default.
- W2912361013 hasConceptScore W2912361013C154945302 @default.
- W2912361013 hasConceptScore W2912361013C169258074 @default.