Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912361701> ?p ?o ?g. }
- W2912361701 endingPage "96" @default.
- W2912361701 startingPage "80" @default.
- W2912361701 abstract "Linear discriminant analysis (LDA) and two dimensional LDA (2DLDA) are widely applied methods for dimensionality reduction. However, both of them lack of robustness and sparseness. Recent studies show that the elastic net and the L1-norm would improve the learning ability of dimensionality reduction. In this paper, we propose a generalized elastic net and apply it into the L1-norm based LDA and 2DLDA to extend LDA and 2DLDA with robustness and sparseness simultaneously (named LDAL1-S and 2DLDAL1-S, respectively). The generalized elastic net also helps LDAL1-S and 2DLDAL1-S avoiding the singularity problem. Moreover, the Lp-norm (0 < p ≤ 1) is used in the generalized elastic net, which makes LDAL1-S and 2DLDAL1-S realize the desired sparseness of the discriminant vectors by selecting proper p. Both LDAL1-S and 2DLDAL1-S are solved through a series of convex problems with equality constraints, with a closed solution for each single problem. Experimental results on three contaminated human face databases show the effectiveness of the proposed methods." @default.
- W2912361701 created "2019-02-21" @default.
- W2912361701 creator A5002586536 @default.
- W2912361701 creator A5014504253 @default.
- W2912361701 creator A5029212610 @default.
- W2912361701 creator A5041009542 @default.
- W2912361701 creator A5051850582 @default.
- W2912361701 creator A5065058975 @default.
- W2912361701 date "2019-04-01" @default.
- W2912361701 modified "2023-10-17" @default.
- W2912361701 title "Sparse L1-norm two dimensional linear discriminant analysis via the generalized elastic net regularization" @default.
- W2912361701 cites W1915008591 @default.
- W2912361701 cites W1966701961 @default.
- W2912361701 cites W1982630952 @default.
- W2912361701 cites W1992633833 @default.
- W2912361701 cites W2001619934 @default.
- W2912361701 cites W2003860694 @default.
- W2912361701 cites W2010690685 @default.
- W2912361701 cites W2012352340 @default.
- W2912361701 cites W2027717478 @default.
- W2912361701 cites W2033419168 @default.
- W2912361701 cites W2036295561 @default.
- W2912361701 cites W2046649434 @default.
- W2912361701 cites W2048126863 @default.
- W2912361701 cites W2052059892 @default.
- W2912361701 cites W2068222852 @default.
- W2912361701 cites W2090341258 @default.
- W2912361701 cites W2092457881 @default.
- W2912361701 cites W2102544846 @default.
- W2912361701 cites W2118250684 @default.
- W2912361701 cites W2120552947 @default.
- W2912361701 cites W2123921160 @default.
- W2912361701 cites W2131777119 @default.
- W2912361701 cites W2135081536 @default.
- W2912361701 cites W2141595746 @default.
- W2912361701 cites W2151416140 @default.
- W2912361701 cites W2155423555 @default.
- W2912361701 cites W2166693468 @default.
- W2912361701 cites W2271208534 @default.
- W2912361701 cites W2278887240 @default.
- W2912361701 cites W2427656690 @default.
- W2912361701 cites W2516176725 @default.
- W2912361701 cites W2543969232 @default.
- W2912361701 cites W2588525379 @default.
- W2912361701 cites W2616552280 @default.
- W2912361701 cites W2621587668 @default.
- W2912361701 cites W2756110473 @default.
- W2912361701 cites W2790688554 @default.
- W2912361701 cites W3104038823 @default.
- W2912361701 doi "https://doi.org/10.1016/j.neucom.2019.01.049" @default.
- W2912361701 hasPublicationYear "2019" @default.
- W2912361701 type Work @default.
- W2912361701 sameAs 2912361701 @default.
- W2912361701 citedByCount "14" @default.
- W2912361701 countsByYear W29123617012020 @default.
- W2912361701 countsByYear W29123617012021 @default.
- W2912361701 countsByYear W29123617012022 @default.
- W2912361701 countsByYear W29123617012023 @default.
- W2912361701 crossrefType "journal-article" @default.
- W2912361701 hasAuthorship W2912361701A5002586536 @default.
- W2912361701 hasAuthorship W2912361701A5014504253 @default.
- W2912361701 hasAuthorship W2912361701A5029212610 @default.
- W2912361701 hasAuthorship W2912361701A5041009542 @default.
- W2912361701 hasAuthorship W2912361701A5051850582 @default.
- W2912361701 hasAuthorship W2912361701A5065058975 @default.
- W2912361701 hasConcept C100022809 @default.
- W2912361701 hasConcept C104317684 @default.
- W2912361701 hasConcept C111030470 @default.
- W2912361701 hasConcept C112680207 @default.
- W2912361701 hasConcept C118615104 @default.
- W2912361701 hasConcept C126255220 @default.
- W2912361701 hasConcept C132954091 @default.
- W2912361701 hasConcept C134306372 @default.
- W2912361701 hasConcept C148483581 @default.
- W2912361701 hasConcept C153180895 @default.
- W2912361701 hasConcept C154945302 @default.
- W2912361701 hasConcept C16171025 @default.
- W2912361701 hasConcept C17744445 @default.
- W2912361701 hasConcept C185592680 @default.
- W2912361701 hasConcept C191795146 @default.
- W2912361701 hasConcept C199539241 @default.
- W2912361701 hasConcept C203868755 @default.
- W2912361701 hasConcept C2524010 @default.
- W2912361701 hasConcept C33923547 @default.
- W2912361701 hasConcept C41008148 @default.
- W2912361701 hasConcept C55493867 @default.
- W2912361701 hasConcept C63479239 @default.
- W2912361701 hasConcept C69738355 @default.
- W2912361701 hasConcept C70518039 @default.
- W2912361701 hasConcept C78397625 @default.
- W2912361701 hasConceptScore W2912361701C100022809 @default.
- W2912361701 hasConceptScore W2912361701C104317684 @default.
- W2912361701 hasConceptScore W2912361701C111030470 @default.
- W2912361701 hasConceptScore W2912361701C112680207 @default.
- W2912361701 hasConceptScore W2912361701C118615104 @default.
- W2912361701 hasConceptScore W2912361701C126255220 @default.
- W2912361701 hasConceptScore W2912361701C132954091 @default.
- W2912361701 hasConceptScore W2912361701C134306372 @default.