Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912362238> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2912362238 abstract "In the modern era of information technology, machine learning algorithms are used in different domains for boosting the quality of decision making. The correct decision making about the disease diagnosis is one of the applications where these approaches are applied successfully for assisting the doctors. Correct and timely diagnosis of disease is the primary requirement of effective treatment. Today, one of the most leading causes of death is heart disease. This chapter deals with the application of different machine learning algorithms for effective heart disease diagnosis. Diagnosis through the machine learning algorithms involves the three major steps, data preprocessing, feature selection, and classification. The chapter covers the experimental study of performance of SVM, ANN, logistic regression, random forest, KNN, AdaBoost, Naive Bayes, decision tree, SGD, CN2 rule inducer approaches." @default.
- W2912362238 created "2019-02-21" @default.
- W2912362238 creator A5012563451 @default.
- W2912362238 creator A5039756390 @default.
- W2912362238 date "2019-01-01" @default.
- W2912362238 modified "2023-10-16" @default.
- W2912362238 title "Heart Disease Diagnosis" @default.
- W2912362238 cites W151592201 @default.
- W2912362238 cites W1551986488 @default.
- W2912362238 cites W1979263106 @default.
- W2912362238 cites W1981653086 @default.
- W2912362238 cites W1990985930 @default.
- W2912362238 cites W1991017491 @default.
- W2912362238 cites W1993860821 @default.
- W2912362238 cites W2021849066 @default.
- W2912362238 cites W2049768409 @default.
- W2912362238 cites W2080084655 @default.
- W2912362238 cites W2082911909 @default.
- W2912362238 cites W2091921805 @default.
- W2912362238 cites W2100912277 @default.
- W2912362238 cites W2110121091 @default.
- W2912362238 cites W2126667102 @default.
- W2912362238 cites W2128091972 @default.
- W2912362238 cites W2132982517 @default.
- W2912362238 cites W2147645183 @default.
- W2912362238 cites W2165687409 @default.
- W2912362238 cites W2186475137 @default.
- W2912362238 cites W2523192554 @default.
- W2912362238 cites W2577341313 @default.
- W2912362238 cites W2617990047 @default.
- W2912362238 cites W2776897388 @default.
- W2912362238 cites W2795587190 @default.
- W2912362238 cites W1896716008 @default.
- W2912362238 doi "https://doi.org/10.4018/978-1-5225-7796-6.ch008" @default.
- W2912362238 hasPublicationYear "2019" @default.
- W2912362238 type Work @default.
- W2912362238 sameAs 2912362238 @default.
- W2912362238 citedByCount "0" @default.
- W2912362238 crossrefType "book-chapter" @default.
- W2912362238 hasAuthorship W2912362238A5012563451 @default.
- W2912362238 hasAuthorship W2912362238A5039756390 @default.
- W2912362238 hasConcept C119857082 @default.
- W2912362238 hasConcept C12267149 @default.
- W2912362238 hasConcept C141404830 @default.
- W2912362238 hasConcept C148483581 @default.
- W2912362238 hasConcept C154945302 @default.
- W2912362238 hasConcept C164705383 @default.
- W2912362238 hasConcept C169258074 @default.
- W2912362238 hasConcept C2780074459 @default.
- W2912362238 hasConcept C34736171 @default.
- W2912362238 hasConcept C41008148 @default.
- W2912362238 hasConcept C46686674 @default.
- W2912362238 hasConcept C52001869 @default.
- W2912362238 hasConcept C71924100 @default.
- W2912362238 hasConcept C84525736 @default.
- W2912362238 hasConceptScore W2912362238C119857082 @default.
- W2912362238 hasConceptScore W2912362238C12267149 @default.
- W2912362238 hasConceptScore W2912362238C141404830 @default.
- W2912362238 hasConceptScore W2912362238C148483581 @default.
- W2912362238 hasConceptScore W2912362238C154945302 @default.
- W2912362238 hasConceptScore W2912362238C164705383 @default.
- W2912362238 hasConceptScore W2912362238C169258074 @default.
- W2912362238 hasConceptScore W2912362238C2780074459 @default.
- W2912362238 hasConceptScore W2912362238C34736171 @default.
- W2912362238 hasConceptScore W2912362238C41008148 @default.
- W2912362238 hasConceptScore W2912362238C46686674 @default.
- W2912362238 hasConceptScore W2912362238C52001869 @default.
- W2912362238 hasConceptScore W2912362238C71924100 @default.
- W2912362238 hasConceptScore W2912362238C84525736 @default.
- W2912362238 hasLocation W29123622381 @default.
- W2912362238 hasOpenAccess W2912362238 @default.
- W2912362238 hasPrimaryLocation W29123622381 @default.
- W2912362238 hasRelatedWork W2748952813 @default.
- W2912362238 hasRelatedWork W2765889516 @default.
- W2912362238 hasRelatedWork W2899084033 @default.
- W2912362238 hasRelatedWork W2961085424 @default.
- W2912362238 hasRelatedWork W3046775127 @default.
- W2912362238 hasRelatedWork W3107474891 @default.
- W2912362238 hasRelatedWork W3136151093 @default.
- W2912362238 hasRelatedWork W4205958290 @default.
- W2912362238 hasRelatedWork W4286629047 @default.
- W2912362238 hasRelatedWork W4224009465 @default.
- W2912362238 isParatext "false" @default.
- W2912362238 isRetracted "false" @default.
- W2912362238 magId "2912362238" @default.
- W2912362238 workType "book-chapter" @default.