Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912365682> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2912365682 endingPage "165" @default.
- W2912365682 startingPage "156" @default.
- W2912365682 abstract "A spatial model for process properties allows for improved production planning in mining by considering the process variability of the deposit. Hitherto, machine-learning modelling methods have been underutilised for spatial modelling in geometallurgy. The goal of this project is to find an efficient way to integrate process properties (iron recovery and mass pull of the Davis tube, iron recovery and mass pull of the wet low intensity magnetic separation, liberation of iron oxides, and P80) for an iron ore case study into a spatial model using machine-learning methods. The modelling was done in two steps. First, the process properties were deployed into a geological database by building non-spatial process models. Second, the process properties estimated in the geological database were extracted together with only their coordinates (x, y, z) and iron grades and spatial process models were built. Modelling methods were evaluated and compared in terms of relative standard deviation (RSD). The lower RSD for decision tree methods suggests that those methods may be preferential when modelling non-linear process properties." @default.
- W2912365682 created "2019-02-21" @default.
- W2912365682 creator A5035994543 @default.
- W2912365682 creator A5056918185 @default.
- W2912365682 creator A5064595159 @default.
- W2912365682 date "2019-04-01" @default.
- W2912365682 modified "2023-10-13" @default.
- W2912365682 title "Evaluation and comparison of different machine-learning methods to integrate sparse process data into a spatial model in geometallurgy" @default.
- W2912365682 cites W1522211256 @default.
- W2912365682 cites W1964357740 @default.
- W2912365682 cites W1978239142 @default.
- W2912365682 cites W1993273815 @default.
- W2912365682 cites W2017337590 @default.
- W2912365682 cites W2039463669 @default.
- W2912365682 cites W2039740059 @default.
- W2912365682 cites W2062547971 @default.
- W2912365682 cites W2078078192 @default.
- W2912365682 cites W2122284941 @default.
- W2912365682 cites W2156665896 @default.
- W2912365682 cites W2219490852 @default.
- W2912365682 cites W2300730389 @default.
- W2912365682 cites W2614956612 @default.
- W2912365682 cites W2724325905 @default.
- W2912365682 cites W2895964089 @default.
- W2912365682 cites W2901048124 @default.
- W2912365682 cites W2902839148 @default.
- W2912365682 cites W2911964244 @default.
- W2912365682 cites W4244238212 @default.
- W2912365682 cites W2758939188 @default.
- W2912365682 doi "https://doi.org/10.1016/j.mineng.2019.01.032" @default.
- W2912365682 hasPublicationYear "2019" @default.
- W2912365682 type Work @default.
- W2912365682 sameAs 2912365682 @default.
- W2912365682 citedByCount "21" @default.
- W2912365682 countsByYear W29123656822019 @default.
- W2912365682 countsByYear W29123656822020 @default.
- W2912365682 countsByYear W29123656822021 @default.
- W2912365682 countsByYear W29123656822022 @default.
- W2912365682 countsByYear W29123656822023 @default.
- W2912365682 crossrefType "journal-article" @default.
- W2912365682 hasAuthorship W2912365682A5035994543 @default.
- W2912365682 hasAuthorship W2912365682A5056918185 @default.
- W2912365682 hasAuthorship W2912365682A5064595159 @default.
- W2912365682 hasConcept C111919701 @default.
- W2912365682 hasConcept C119857082 @default.
- W2912365682 hasConcept C124101348 @default.
- W2912365682 hasConcept C127413603 @default.
- W2912365682 hasConcept C154945302 @default.
- W2912365682 hasConcept C174998907 @default.
- W2912365682 hasConcept C21547014 @default.
- W2912365682 hasConcept C41008148 @default.
- W2912365682 hasConcept C76956256 @default.
- W2912365682 hasConcept C98045186 @default.
- W2912365682 hasConceptScore W2912365682C111919701 @default.
- W2912365682 hasConceptScore W2912365682C119857082 @default.
- W2912365682 hasConceptScore W2912365682C124101348 @default.
- W2912365682 hasConceptScore W2912365682C127413603 @default.
- W2912365682 hasConceptScore W2912365682C154945302 @default.
- W2912365682 hasConceptScore W2912365682C174998907 @default.
- W2912365682 hasConceptScore W2912365682C21547014 @default.
- W2912365682 hasConceptScore W2912365682C41008148 @default.
- W2912365682 hasConceptScore W2912365682C76956256 @default.
- W2912365682 hasConceptScore W2912365682C98045186 @default.
- W2912365682 hasLocation W29123656821 @default.
- W2912365682 hasOpenAccess W2912365682 @default.
- W2912365682 hasPrimaryLocation W29123656821 @default.
- W2912365682 hasRelatedWork W1538215434 @default.
- W2912365682 hasRelatedWork W2783964355 @default.
- W2912365682 hasRelatedWork W2961085424 @default.
- W2912365682 hasRelatedWork W3046775127 @default.
- W2912365682 hasRelatedWork W3170094116 @default.
- W2912365682 hasRelatedWork W4285260836 @default.
- W2912365682 hasRelatedWork W4286629047 @default.
- W2912365682 hasRelatedWork W4306321456 @default.
- W2912365682 hasRelatedWork W4306674287 @default.
- W2912365682 hasRelatedWork W4224009465 @default.
- W2912365682 hasVolume "134" @default.
- W2912365682 isParatext "false" @default.
- W2912365682 isRetracted "false" @default.
- W2912365682 magId "2912365682" @default.
- W2912365682 workType "article" @default.