Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912369217> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W2912369217 abstract "The quality of the human motion data faces challenges in producing high classification accuracy in large data streams for essential knowledge discovery. This reflects the need to identify the key factors that affect the results of classification. Present studies merely focus on estimating joints, skeleton and motions of human activities. However, the effect of the number of attributes towards classification accuracies of human motion has not been discussed. Therefore, this paper is aimed at determining the amount of attributes that affect the qualities of human motion classification. The case studies involve simple locomotion activities: jumping, walking and running retrieved from the public available domain. The raw video data were transformed into numeric in the form of x and y-coordinates and rotation angles as to be tested from a single up to triple combinations of data attributes. The impact of the number of attributes on classification accuracy is evaluated via Bayes, Function, Lazy, Meta, Rule and Trees classifier algorithms supported by the WEKA tool. Results revealed that three attributes data gave the best classification performance with an average accuracy of 81.50%. The findings also revealed that the number of attribute is directly proportional to the classification accuracy of human motion data." @default.
- W2912369217 created "2019-02-21" @default.
- W2912369217 creator A5011654511 @default.
- W2912369217 creator A5054898342 @default.
- W2912369217 date "2018-07-01" @default.
- W2912369217 modified "2023-09-25" @default.
- W2912369217 title "IMPACT OF NUMBER OF ATTRIBUTES ON THE ACCURACY OF HUMAN MOTION CLASSIFICATION" @default.
- W2912369217 hasPublicationYear "2018" @default.
- W2912369217 type Work @default.
- W2912369217 sameAs 2912369217 @default.
- W2912369217 citedByCount "0" @default.
- W2912369217 crossrefType "journal-article" @default.
- W2912369217 hasAuthorship W2912369217A5011654511 @default.
- W2912369217 hasAuthorship W2912369217A5054898342 @default.
- W2912369217 hasConcept C104114177 @default.
- W2912369217 hasConcept C105795698 @default.
- W2912369217 hasConcept C153180895 @default.
- W2912369217 hasConcept C154945302 @default.
- W2912369217 hasConcept C2986578859 @default.
- W2912369217 hasConcept C33923547 @default.
- W2912369217 hasConcept C41008148 @default.
- W2912369217 hasConceptScore W2912369217C104114177 @default.
- W2912369217 hasConceptScore W2912369217C105795698 @default.
- W2912369217 hasConceptScore W2912369217C153180895 @default.
- W2912369217 hasConceptScore W2912369217C154945302 @default.
- W2912369217 hasConceptScore W2912369217C2986578859 @default.
- W2912369217 hasConceptScore W2912369217C33923547 @default.
- W2912369217 hasConceptScore W2912369217C41008148 @default.
- W2912369217 hasLocation W29123692171 @default.
- W2912369217 hasOpenAccess W2912369217 @default.
- W2912369217 hasPrimaryLocation W29123692171 @default.
- W2912369217 hasRelatedWork W2029249305 @default.
- W2912369217 hasRelatedWork W2033914206 @default.
- W2912369217 hasRelatedWork W2042327336 @default.
- W2912369217 hasRelatedWork W2046077695 @default.
- W2912369217 hasRelatedWork W2146076056 @default.
- W2912369217 hasRelatedWork W2163831990 @default.
- W2912369217 hasRelatedWork W2378160586 @default.
- W2912369217 hasRelatedWork W2996038082 @default.
- W2912369217 hasRelatedWork W3003836766 @default.
- W2912369217 hasRelatedWork W4299595394 @default.
- W2912369217 isParatext "false" @default.
- W2912369217 isRetracted "false" @default.
- W2912369217 magId "2912369217" @default.
- W2912369217 workType "article" @default.