Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912371042> ?p ?o ?g. }
- W2912371042 abstract "Existing visual reasoning datasets such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) - consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations. The SNLI-VE dataset is publicly available at this https URL necla-ml/SNLI-VE." @default.
- W2912371042 created "2019-02-21" @default.
- W2912371042 creator A5016480160 @default.
- W2912371042 creator A5024424116 @default.
- W2912371042 creator A5032529516 @default.
- W2912371042 creator A5036466084 @default.
- W2912371042 date "2019-01-20" @default.
- W2912371042 modified "2023-09-27" @default.
- W2912371042 title "Visual Entailment: A Novel Task for Fine-Grained Image Understanding" @default.
- W2912371042 cites W1514535095 @default.
- W2912371042 cites W1525961042 @default.
- W2912371042 cites W1686810756 @default.
- W2912371042 cites W1849277567 @default.
- W2912371042 cites W1897507002 @default.
- W2912371042 cites W1924770834 @default.
- W2912371042 cites W2045254372 @default.
- W2912371042 cites W2077069816 @default.
- W2912371042 cites W2087451659 @default.
- W2912371042 cites W2116705992 @default.
- W2912371042 cites W2118463056 @default.
- W2912371042 cites W2123024445 @default.
- W2912371042 cites W2136462581 @default.
- W2912371042 cites W2146897752 @default.
- W2912371042 cites W2185175083 @default.
- W2912371042 cites W2189070436 @default.
- W2912371042 cites W2190067570 @default.
- W2912371042 cites W2195388612 @default.
- W2912371042 cites W2250539671 @default.
- W2912371042 cites W2261271299 @default.
- W2912371042 cites W2282821441 @default.
- W2912371042 cites W2412400526 @default.
- W2912371042 cites W2560645892 @default.
- W2912371042 cites W2583695460 @default.
- W2912371042 cites W2591649037 @default.
- W2912371042 cites W2595373712 @default.
- W2912371042 cites W2599765304 @default.
- W2912371042 cites W2608787653 @default.
- W2912371042 cites W2608915011 @default.
- W2912371042 cites W2613526370 @default.
- W2912371042 cites W2624614404 @default.
- W2912371042 cites W2626778328 @default.
- W2912371042 cites W2743087755 @default.
- W2912371042 cites W2745166287 @default.
- W2912371042 cites W2754191212 @default.
- W2912371042 cites W2760103357 @default.
- W2912371042 cites W2776207810 @default.
- W2912371042 cites W2786209943 @default.
- W2912371042 cites W2787108264 @default.
- W2912371042 cites W2790415926 @default.
- W2912371042 cites W2791148095 @default.
- W2912371042 cites W2804243936 @default.
- W2912371042 cites W2806075129 @default.
- W2912371042 cites W2807535589 @default.
- W2912371042 cites W2884093133 @default.
- W2912371042 cites W2949218037 @default.
- W2912371042 cites W2949474740 @default.
- W2912371042 cites W2949650786 @default.
- W2912371042 cites W2949780682 @default.
- W2912371042 cites W2950015165 @default.
- W2912371042 cites W2950096677 @default.
- W2912371042 cites W2950179405 @default.
- W2912371042 cites W2950500611 @default.
- W2912371042 cites W2950761309 @default.
- W2912371042 cites W2951343884 @default.
- W2912371042 cites W2951584201 @default.
- W2912371042 cites W2951590222 @default.
- W2912371042 cites W2951619830 @default.
- W2912371042 cites W2951805548 @default.
- W2912371042 cites W2952020101 @default.
- W2912371042 cites W2952228917 @default.
- W2912371042 cites W2953084091 @default.
- W2912371042 cites W2953212746 @default.
- W2912371042 cites W2962716332 @default.
- W2912371042 cites W2962884579 @default.
- W2912371042 cites W2963453030 @default.
- W2912371042 cites W2963649796 @default.
- W2912371042 cites W2963758027 @default.
- W2912371042 cites W2964138343 @default.
- W2912371042 cites W2964345214 @default.
- W2912371042 cites W806995027 @default.
- W2912371042 cites W92662927 @default.
- W2912371042 hasPublicationYear "2019" @default.
- W2912371042 type Work @default.
- W2912371042 sameAs 2912371042 @default.
- W2912371042 citedByCount "50" @default.
- W2912371042 countsByYear W29123710422018 @default.
- W2912371042 countsByYear W29123710422019 @default.
- W2912371042 countsByYear W29123710422020 @default.
- W2912371042 countsByYear W29123710422021 @default.
- W2912371042 countsByYear W29123710422022 @default.
- W2912371042 crossrefType "posted-content" @default.
- W2912371042 hasAuthorship W2912371042A5016480160 @default.
- W2912371042 hasAuthorship W2912371042A5024424116 @default.
- W2912371042 hasAuthorship W2912371042A5032529516 @default.
- W2912371042 hasAuthorship W2912371042A5036466084 @default.
- W2912371042 hasConcept C115961682 @default.
- W2912371042 hasConcept C134752490 @default.
- W2912371042 hasConcept C138885662 @default.
- W2912371042 hasConcept C154945302 @default.
- W2912371042 hasConcept C162324750 @default.