Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912371366> ?p ?o ?g. }
- W2912371366 endingPage "223" @default.
- W2912371366 startingPage "223" @default.
- W2912371366 abstract "Capsule networks can be considered to be the next era of deep learning and have recently shown their advantages in supervised classification. Instead of using scalar values to represent features, the capsule networks use vectors to represent features, which enriches the feature presentation capability. This paper introduces a deep capsule network for hyperspectral image (HSI) classification to improve the performance of the conventional convolutional neural networks (CNNs). Furthermore, a modification of the capsule network named Conv-Capsule is proposed. Instead of using full connections, local connections and shared transform matrices, which are the core ideas of CNNs, are used in the Conv-Capsule network architecture. In Conv-Capsule, the number of trainable parameters is reduced compared to the original capsule, which potentially mitigates the overfitting issue when the number of available training samples is limited. Specifically, we propose two schemes: (1) A 1D deep capsule network is designed for spectral classification, as a combination of principal component analysis, CNN, and the Conv-Capsule network, and (2) a 3D deep capsule network is designed for spectral-spatial classification, as a combination of extended multi-attribute profiles, CNN, and the Conv-Capsule network. The proposed classifiers are tested on three widely-used hyperspectral data sets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, including kernel support vector machines, CNNs, and recurrent neural network." @default.
- W2912371366 created "2019-02-21" @default.
- W2912371366 creator A5002687387 @default.
- W2912371366 creator A5024631382 @default.
- W2912371366 creator A5026825030 @default.
- W2912371366 creator A5027034650 @default.
- W2912371366 creator A5074919292 @default.
- W2912371366 date "2019-01-22" @default.
- W2912371366 modified "2023-10-05" @default.
- W2912371366 title "Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification" @default.
- W2912371366 cites W1521436688 @default.
- W2912371366 cites W1950365613 @default.
- W2912371366 cites W1964669384 @default.
- W2912371366 cites W1966035399 @default.
- W2912371366 cites W2004104348 @default.
- W2912371366 cites W2029316659 @default.
- W2912371366 cites W2043665634 @default.
- W2912371366 cites W2084260365 @default.
- W2912371366 cites W2090424610 @default.
- W2912371366 cites W2098676252 @default.
- W2912371366 cites W2101711129 @default.
- W2912371366 cites W2106277226 @default.
- W2912371366 cites W2107131609 @default.
- W2912371366 cites W2112796928 @default.
- W2912371366 cites W2114819256 @default.
- W2912371366 cites W2124547294 @default.
- W2912371366 cites W2125240520 @default.
- W2912371366 cites W2127199143 @default.
- W2912371366 cites W2134969826 @default.
- W2912371366 cites W2136251662 @default.
- W2912371366 cites W2152429055 @default.
- W2912371366 cites W2153409933 @default.
- W2912371366 cites W2159070926 @default.
- W2912371366 cites W2159498975 @default.
- W2912371366 cites W2257669061 @default.
- W2912371366 cites W2334150308 @default.
- W2912371366 cites W2345118402 @default.
- W2912371366 cites W2412588858 @default.
- W2912371366 cites W2500751094 @default.
- W2912371366 cites W2547846938 @default.
- W2912371366 cites W2548791488 @default.
- W2912371366 cites W2572303978 @default.
- W2912371366 cites W2603422184 @default.
- W2912371366 cites W2603834682 @default.
- W2912371366 cites W2743255627 @default.
- W2912371366 cites W2764276316 @default.
- W2912371366 cites W2767651786 @default.
- W2912371366 cites W2889943009 @default.
- W2912371366 cites W2898381489 @default.
- W2912371366 cites W4240485910 @default.
- W2912371366 doi "https://doi.org/10.3390/rs11030223" @default.
- W2912371366 hasPublicationYear "2019" @default.
- W2912371366 type Work @default.
- W2912371366 sameAs 2912371366 @default.
- W2912371366 citedByCount "74" @default.
- W2912371366 countsByYear W29123713662019 @default.
- W2912371366 countsByYear W29123713662020 @default.
- W2912371366 countsByYear W29123713662021 @default.
- W2912371366 countsByYear W29123713662022 @default.
- W2912371366 countsByYear W29123713662023 @default.
- W2912371366 crossrefType "journal-article" @default.
- W2912371366 hasAuthorship W2912371366A5002687387 @default.
- W2912371366 hasAuthorship W2912371366A5024631382 @default.
- W2912371366 hasAuthorship W2912371366A5026825030 @default.
- W2912371366 hasAuthorship W2912371366A5027034650 @default.
- W2912371366 hasAuthorship W2912371366A5074919292 @default.
- W2912371366 hasBestOaLocation W29123713661 @default.
- W2912371366 hasConcept C104122410 @default.
- W2912371366 hasConcept C108583219 @default.
- W2912371366 hasConcept C114614502 @default.
- W2912371366 hasConcept C153180895 @default.
- W2912371366 hasConcept C154945302 @default.
- W2912371366 hasConcept C159078339 @default.
- W2912371366 hasConcept C193415008 @default.
- W2912371366 hasConcept C22019652 @default.
- W2912371366 hasConcept C2778778583 @default.
- W2912371366 hasConcept C33923547 @default.
- W2912371366 hasConcept C38652104 @default.
- W2912371366 hasConcept C41008148 @default.
- W2912371366 hasConcept C50644808 @default.
- W2912371366 hasConcept C59822182 @default.
- W2912371366 hasConcept C74193536 @default.
- W2912371366 hasConcept C81363708 @default.
- W2912371366 hasConcept C86803240 @default.
- W2912371366 hasConceptScore W2912371366C104122410 @default.
- W2912371366 hasConceptScore W2912371366C108583219 @default.
- W2912371366 hasConceptScore W2912371366C114614502 @default.
- W2912371366 hasConceptScore W2912371366C153180895 @default.
- W2912371366 hasConceptScore W2912371366C154945302 @default.
- W2912371366 hasConceptScore W2912371366C159078339 @default.
- W2912371366 hasConceptScore W2912371366C193415008 @default.
- W2912371366 hasConceptScore W2912371366C22019652 @default.
- W2912371366 hasConceptScore W2912371366C2778778583 @default.
- W2912371366 hasConceptScore W2912371366C33923547 @default.
- W2912371366 hasConceptScore W2912371366C38652104 @default.
- W2912371366 hasConceptScore W2912371366C41008148 @default.
- W2912371366 hasConceptScore W2912371366C50644808 @default.
- W2912371366 hasConceptScore W2912371366C59822182 @default.