Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912371504> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2912371504 abstract "With the ongoing expansion of digitized artworks, the automated analysis and categorization of fine art paintings have become a rapidly growing research field. However, due to the implicit subjectivity and nuances separating different artistic movements, numerical art analysis implies significant challenges. This paper describes a new efficient method that improves the classification accuracy of fine-art paintings compared to the existing baseline methods. The proposed approach is based on transfer learning and classification of sub-regions or patches of the painting. A weighted sum of the individual-patch classification outcomes gives the final stylistic label of the analyzed painting. The patch weights are optimized to maximize the overall style recognition accuracy. Experimental validation based on two standard art classification datasets and six different pre-trained convolutional neural network (CNN) models (AlexNet, VGG-16, VGG-19, GoogLeNet, ResNet-50 and Inceptionv3) shows that the proposed approach outperforms the baseline techniques and offers low computational and data costs." @default.
- W2912371504 created "2019-02-21" @default.
- W2912371504 creator A5065207789 @default.
- W2912371504 creator A5087738784 @default.
- W2912371504 creator A5091115011 @default.
- W2912371504 date "2018-12-01" @default.
- W2912371504 modified "2023-10-16" @default.
- W2912371504 title "Classification of Style in Fine-Art Paintings Using Transfer Learning and Weighted Image Patches" @default.
- W2912371504 cites W1584585014 @default.
- W2912371504 cites W1622449098 @default.
- W2912371504 cites W1686810756 @default.
- W2912371504 cites W2057624659 @default.
- W2912371504 cites W2097117768 @default.
- W2912371504 cites W2117539524 @default.
- W2912371504 cites W2128907386 @default.
- W2912371504 cites W2163605009 @default.
- W2912371504 cites W2183341477 @default.
- W2912371504 cites W2194775991 @default.
- W2912371504 cites W2507798114 @default.
- W2912371504 cites W2510733224 @default.
- W2912371504 cites W2515486462 @default.
- W2912371504 cites W2613527656 @default.
- W2912371504 cites W2623430765 @default.
- W2912371504 cites W2763426046 @default.
- W2912371504 cites W2785151601 @default.
- W2912371504 cites W2791266670 @default.
- W2912371504 cites W2962883796 @default.
- W2912371504 cites W2963295540 @default.
- W2912371504 doi "https://doi.org/10.1109/icspcs.2018.8631731" @default.
- W2912371504 hasPublicationYear "2018" @default.
- W2912371504 type Work @default.
- W2912371504 sameAs 2912371504 @default.
- W2912371504 citedByCount "13" @default.
- W2912371504 countsByYear W29123715042019 @default.
- W2912371504 countsByYear W29123715042020 @default.
- W2912371504 countsByYear W29123715042021 @default.
- W2912371504 countsByYear W29123715042022 @default.
- W2912371504 countsByYear W29123715042023 @default.
- W2912371504 crossrefType "proceedings-article" @default.
- W2912371504 hasAuthorship W2912371504A5065207789 @default.
- W2912371504 hasAuthorship W2912371504A5087738784 @default.
- W2912371504 hasAuthorship W2912371504A5091115011 @default.
- W2912371504 hasConcept C111368507 @default.
- W2912371504 hasConcept C115961682 @default.
- W2912371504 hasConcept C12725497 @default.
- W2912371504 hasConcept C127313418 @default.
- W2912371504 hasConcept C142362112 @default.
- W2912371504 hasConcept C150899416 @default.
- W2912371504 hasConcept C153180895 @default.
- W2912371504 hasConcept C153349607 @default.
- W2912371504 hasConcept C154945302 @default.
- W2912371504 hasConcept C202444582 @default.
- W2912371504 hasConcept C205783811 @default.
- W2912371504 hasConcept C2776445246 @default.
- W2912371504 hasConcept C2944601119 @default.
- W2912371504 hasConcept C33923547 @default.
- W2912371504 hasConcept C41008148 @default.
- W2912371504 hasConcept C75294576 @default.
- W2912371504 hasConcept C81363708 @default.
- W2912371504 hasConcept C94124525 @default.
- W2912371504 hasConcept C9652623 @default.
- W2912371504 hasConceptScore W2912371504C111368507 @default.
- W2912371504 hasConceptScore W2912371504C115961682 @default.
- W2912371504 hasConceptScore W2912371504C12725497 @default.
- W2912371504 hasConceptScore W2912371504C127313418 @default.
- W2912371504 hasConceptScore W2912371504C142362112 @default.
- W2912371504 hasConceptScore W2912371504C150899416 @default.
- W2912371504 hasConceptScore W2912371504C153180895 @default.
- W2912371504 hasConceptScore W2912371504C153349607 @default.
- W2912371504 hasConceptScore W2912371504C154945302 @default.
- W2912371504 hasConceptScore W2912371504C202444582 @default.
- W2912371504 hasConceptScore W2912371504C205783811 @default.
- W2912371504 hasConceptScore W2912371504C2776445246 @default.
- W2912371504 hasConceptScore W2912371504C2944601119 @default.
- W2912371504 hasConceptScore W2912371504C33923547 @default.
- W2912371504 hasConceptScore W2912371504C41008148 @default.
- W2912371504 hasConceptScore W2912371504C75294576 @default.
- W2912371504 hasConceptScore W2912371504C81363708 @default.
- W2912371504 hasConceptScore W2912371504C94124525 @default.
- W2912371504 hasConceptScore W2912371504C9652623 @default.
- W2912371504 hasLocation W29123715041 @default.
- W2912371504 hasOpenAccess W2912371504 @default.
- W2912371504 hasPrimaryLocation W29123715041 @default.
- W2912371504 hasRelatedWork W2738221750 @default.
- W2912371504 hasRelatedWork W2800691917 @default.
- W2912371504 hasRelatedWork W2807839383 @default.
- W2912371504 hasRelatedWork W2972069047 @default.
- W2912371504 hasRelatedWork W3012393889 @default.
- W2912371504 hasRelatedWork W3018421652 @default.
- W2912371504 hasRelatedWork W3091976719 @default.
- W2912371504 hasRelatedWork W3118457286 @default.
- W2912371504 hasRelatedWork W3153891452 @default.
- W2912371504 hasRelatedWork W3189091156 @default.
- W2912371504 isParatext "false" @default.
- W2912371504 isRetracted "false" @default.
- W2912371504 magId "2912371504" @default.
- W2912371504 workType "article" @default.