Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912374714> ?p ?o ?g. }
- W2912374714 endingPage "452" @default.
- W2912374714 startingPage "429" @default.
- W2912374714 abstract "Extracting impulsive information under strong background noise and harmonic interference is a challenging problem for bearing fault diagnosis. Multi-scale transforms have achieved great success in extracting impulsive feature information, however, how to choose a suitable transform is a difficult problem, especially in the case of strong noise interference. Therefore, dictionary learning methods have attracted more and more attention in recent years. A weighted multi-scale dictionary learning model (WMSDL) is proposed in this paper which integrates the multi-scale transform and fault information into a unified dictionary learning model and it successfully overcomes four disadvantages of traditional dictionary learning algorithms including lacking the multi-scale property; restricting training samples to local patches; being sensitive to strong harmonic interference; suffering from high computational complexity. Moreover, algorithmic derivation, computational complexity and parameter selection are discussed. Finally, The effectiveness of the proposed method is verified by both the numerical simulations and experiments. Comparisons with other state-of-the-art methods further demonstrate the superiority of the proposed method." @default.
- W2912374714 created "2019-02-21" @default.
- W2912374714 creator A5002722139 @default.
- W2912374714 creator A5033308608 @default.
- W2912374714 creator A5038055973 @default.
- W2912374714 creator A5081020964 @default.
- W2912374714 creator A5088503073 @default.
- W2912374714 date "2019-04-01" @default.
- W2912374714 modified "2023-10-15" @default.
- W2912374714 title "A weighted multi-scale dictionary learning model and its applications on bearing fault diagnosis" @default.
- W2912374714 cites W1196777648 @default.
- W2912374714 cites W1591714781 @default.
- W2912374714 cites W1964511482 @default.
- W2912374714 cites W1976709621 @default.
- W2912374714 cites W1991189822 @default.
- W2912374714 cites W2019505419 @default.
- W2912374714 cites W2020351623 @default.
- W2912374714 cites W2027805700 @default.
- W2912374714 cites W2028119131 @default.
- W2912374714 cites W2046674752 @default.
- W2912374714 cites W2056758595 @default.
- W2912374714 cites W2060304859 @default.
- W2912374714 cites W2066458068 @default.
- W2912374714 cites W2105464873 @default.
- W2912374714 cites W2112797878 @default.
- W2912374714 cites W2115429828 @default.
- W2912374714 cites W2127320676 @default.
- W2912374714 cites W2129812935 @default.
- W2912374714 cites W2160547390 @default.
- W2912374714 cites W2210061839 @default.
- W2912374714 cites W2250314463 @default.
- W2912374714 cites W2255495958 @default.
- W2912374714 cites W2259236698 @default.
- W2912374714 cites W2345533379 @default.
- W2912374714 cites W2354630311 @default.
- W2912374714 cites W2403121581 @default.
- W2912374714 cites W2408856841 @default.
- W2912374714 cites W2437984376 @default.
- W2912374714 cites W2521543067 @default.
- W2912374714 cites W2557478438 @default.
- W2912374714 cites W2583356199 @default.
- W2912374714 cites W2599672124 @default.
- W2912374714 cites W2615769091 @default.
- W2912374714 cites W2741468678 @default.
- W2912374714 cites W2784141614 @default.
- W2912374714 cites W2789811186 @default.
- W2912374714 cites W2791794685 @default.
- W2912374714 cites W2799476788 @default.
- W2912374714 cites W2805662770 @default.
- W2912374714 cites W2884730834 @default.
- W2912374714 cites W2890046235 @default.
- W2912374714 cites W2895594817 @default.
- W2912374714 cites W3099238915 @default.
- W2912374714 cites W4250955649 @default.
- W2912374714 doi "https://doi.org/10.1016/j.jsv.2019.01.042" @default.
- W2912374714 hasPublicationYear "2019" @default.
- W2912374714 type Work @default.
- W2912374714 sameAs 2912374714 @default.
- W2912374714 citedByCount "55" @default.
- W2912374714 countsByYear W29123747142019 @default.
- W2912374714 countsByYear W29123747142020 @default.
- W2912374714 countsByYear W29123747142021 @default.
- W2912374714 countsByYear W29123747142022 @default.
- W2912374714 countsByYear W29123747142023 @default.
- W2912374714 crossrefType "journal-article" @default.
- W2912374714 hasAuthorship W2912374714A5002722139 @default.
- W2912374714 hasAuthorship W2912374714A5033308608 @default.
- W2912374714 hasAuthorship W2912374714A5038055973 @default.
- W2912374714 hasAuthorship W2912374714A5081020964 @default.
- W2912374714 hasAuthorship W2912374714A5088503073 @default.
- W2912374714 hasConcept C111472728 @default.
- W2912374714 hasConcept C11413529 @default.
- W2912374714 hasConcept C115961682 @default.
- W2912374714 hasConcept C119857082 @default.
- W2912374714 hasConcept C121332964 @default.
- W2912374714 hasConcept C127162648 @default.
- W2912374714 hasConcept C127313418 @default.
- W2912374714 hasConcept C127934551 @default.
- W2912374714 hasConcept C138885662 @default.
- W2912374714 hasConcept C153180895 @default.
- W2912374714 hasConcept C154945302 @default.
- W2912374714 hasConcept C165205528 @default.
- W2912374714 hasConcept C175551986 @default.
- W2912374714 hasConcept C179799912 @default.
- W2912374714 hasConcept C189950617 @default.
- W2912374714 hasConcept C199978012 @default.
- W2912374714 hasConcept C2776401178 @default.
- W2912374714 hasConcept C2778755073 @default.
- W2912374714 hasConcept C31258907 @default.
- W2912374714 hasConcept C32022120 @default.
- W2912374714 hasConcept C41008148 @default.
- W2912374714 hasConcept C41895202 @default.
- W2912374714 hasConcept C62520636 @default.
- W2912374714 hasConcept C99498987 @default.
- W2912374714 hasConceptScore W2912374714C111472728 @default.
- W2912374714 hasConceptScore W2912374714C11413529 @default.
- W2912374714 hasConceptScore W2912374714C115961682 @default.
- W2912374714 hasConceptScore W2912374714C119857082 @default.