Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912382159> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2912382159 endingPage "517" @default.
- W2912382159 startingPage "509" @default.
- W2912382159 abstract "Sweet cherry fruit cracking caused by seasonal rains is a major source of crop loss in the U.S. Pacific Northwest region and around the globe. In-field monitoring of cherry fruit surface wetness and temperature is, therefore, very important in fruit loss management. To determine the feasibility of low-resolution thermal-RGB imagery for detecting sweet cherry surface wetness, an experiment was carried out in plots of Skeena and Selah cherry varieties with Y-trellised and vertical architecture, respectively, at the Roza Farm of Washington State University, Prosser, WA. To wet cherries, 5 mm of rain was applied by running a rain simulator for 4 min (1.25 mm min−1) above canopies. Rainwater samples were collected using five rain gauges to quantify the applied amount of water. The in-field sensing setup included two custom-built thermal-RGB imagers, a microclimate-measuring unit and two leaf wetness sensors. The imagers were installed at a height of 2.1 m above the ground surface and were about 20 cm from the target cherries. The leaf wetness sensors were next to the cherries in the field of view of the imagers. A custom computer vision algorithm was developed and used to identify leaves and cherries in thermal and RGB images and extract the surface temperatures. The relationship between raw and normalized surface temperature, and wetness level and duration was investigated. The applicability of normalized cherry surface and air temperature difference was also studied. The results revealed that low-resolution thermal-RGB imagery can be used for detecting cherry fruit wetness level and duration. There was also a high correlation between the surface temperature of leaves and cherry fruits during the wetness period suggesting the temperature of leaves as reliable surrogate for cherry surface wetness and temperature monitoring. By utilizing the proposed imagery-based system, decision aid tools may be developed for efficient rainwater removal to prevent fruit cracking." @default.
- W2912382159 created "2019-02-21" @default.
- W2912382159 creator A5033987184 @default.
- W2912382159 creator A5090615723 @default.
- W2912382159 date "2019-02-01" @default.
- W2912382159 modified "2023-09-26" @default.
- W2912382159 title "Detecting fruit surface wetness using a custom-built low-resolution thermal-RGB imager" @default.
- W2912382159 cites W1987602647 @default.
- W2912382159 cites W1994855590 @default.
- W2912382159 cites W2010633042 @default.
- W2912382159 cites W2020282874 @default.
- W2912382159 cites W2022028290 @default.
- W2912382159 cites W2022891504 @default.
- W2912382159 cites W2026949508 @default.
- W2912382159 cites W2057771838 @default.
- W2912382159 cites W2059648032 @default.
- W2912382159 cites W2098839990 @default.
- W2912382159 cites W2125236168 @default.
- W2912382159 cites W2162772680 @default.
- W2912382159 cites W2314415328 @default.
- W2912382159 cites W2339766397 @default.
- W2912382159 cites W2523527359 @default.
- W2912382159 cites W2615516218 @default.
- W2912382159 cites W2792229137 @default.
- W2912382159 cites W2794302172 @default.
- W2912382159 doi "https://doi.org/10.1016/j.compag.2019.01.023" @default.
- W2912382159 hasPublicationYear "2019" @default.
- W2912382159 type Work @default.
- W2912382159 sameAs 2912382159 @default.
- W2912382159 citedByCount "8" @default.
- W2912382159 countsByYear W29123821592020 @default.
- W2912382159 countsByYear W29123821592021 @default.
- W2912382159 countsByYear W29123821592022 @default.
- W2912382159 countsByYear W29123821592023 @default.
- W2912382159 crossrefType "journal-article" @default.
- W2912382159 hasAuthorship W2912382159A5033987184 @default.
- W2912382159 hasAuthorship W2912382159A5090615723 @default.
- W2912382159 hasConcept C111919701 @default.
- W2912382159 hasConcept C144027150 @default.
- W2912382159 hasConcept C166957645 @default.
- W2912382159 hasConcept C205649164 @default.
- W2912382159 hasConcept C2780215729 @default.
- W2912382159 hasConcept C32957820 @default.
- W2912382159 hasConcept C39432304 @default.
- W2912382159 hasConcept C41008148 @default.
- W2912382159 hasConcept C62649853 @default.
- W2912382159 hasConcept C82990744 @default.
- W2912382159 hasConcept C86803240 @default.
- W2912382159 hasConceptScore W2912382159C111919701 @default.
- W2912382159 hasConceptScore W2912382159C144027150 @default.
- W2912382159 hasConceptScore W2912382159C166957645 @default.
- W2912382159 hasConceptScore W2912382159C205649164 @default.
- W2912382159 hasConceptScore W2912382159C2780215729 @default.
- W2912382159 hasConceptScore W2912382159C32957820 @default.
- W2912382159 hasConceptScore W2912382159C39432304 @default.
- W2912382159 hasConceptScore W2912382159C41008148 @default.
- W2912382159 hasConceptScore W2912382159C62649853 @default.
- W2912382159 hasConceptScore W2912382159C82990744 @default.
- W2912382159 hasConceptScore W2912382159C86803240 @default.
- W2912382159 hasFunder F4320309913 @default.
- W2912382159 hasLocation W29123821591 @default.
- W2912382159 hasOpenAccess W2912382159 @default.
- W2912382159 hasPrimaryLocation W29123821591 @default.
- W2912382159 hasRelatedWork W101340666 @default.
- W2912382159 hasRelatedWork W1591943984 @default.
- W2912382159 hasRelatedWork W1978280867 @default.
- W2912382159 hasRelatedWork W1984408808 @default.
- W2912382159 hasRelatedWork W2080082668 @default.
- W2912382159 hasRelatedWork W2793703521 @default.
- W2912382159 hasRelatedWork W3115620256 @default.
- W2912382159 hasRelatedWork W4211199814 @default.
- W2912382159 hasRelatedWork W4281612865 @default.
- W2912382159 hasRelatedWork W2522158630 @default.
- W2912382159 hasVolume "157" @default.
- W2912382159 isParatext "false" @default.
- W2912382159 isRetracted "false" @default.
- W2912382159 magId "2912382159" @default.
- W2912382159 workType "article" @default.