Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912383074> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2912383074 abstract "Accurate modeling of heat transfer devices is important for airborne electronic equipment cabin thermal prediction and thermal management. The current thermal models are mostly lumped model based on Thermal Network Model (TNM). The least square method is often used to compute and identify its parameters. Because of the principle of lumped parameter, thermal network model cannot correctly characterize the nonlinear temperature change process in the cabin, and the prediction accuracy is poor. Recently, neural network has gradually become a major research direction of heat transfer process modeling due to its powerful learning ability and data approximation performance. In order to achieve more accurate online thermal modeling of electronic equipment cabin, a sliding time window method based on Random Vector Function Link (RVFL) is proposed. By training the measured temperature in the electronic equipment cabin, the sliding window RVFLNN is built to predict the temperature of the equipment in the subsequent window. When the accuracy of this method cannot meet the requirement, the model is quickly updated according to the data acquired in real time. The real data experiments verify the effectiveness of this method as well as fast modeling speed." @default.
- W2912383074 created "2019-02-21" @default.
- W2912383074 creator A5005215310 @default.
- W2912383074 creator A5014154811 @default.
- W2912383074 creator A5015515281 @default.
- W2912383074 creator A5035950527 @default.
- W2912383074 date "2018-10-01" @default.
- W2912383074 modified "2023-09-24" @default.
- W2912383074 title "Dynamic Thermal Prediction Model for the Electronic Equipment Cabin Based on RVFL Network" @default.
- W2912383074 cites W1848211986 @default.
- W2912383074 cites W2069301212 @default.
- W2912383074 cites W2109552880 @default.
- W2912383074 cites W2133125787 @default.
- W2912383074 cites W2137864425 @default.
- W2912383074 cites W2149714265 @default.
- W2912383074 cites W2467318186 @default.
- W2912383074 doi "https://doi.org/10.1109/cisp-bmei.2018.8633235" @default.
- W2912383074 hasPublicationYear "2018" @default.
- W2912383074 type Work @default.
- W2912383074 sameAs 2912383074 @default.
- W2912383074 citedByCount "2" @default.
- W2912383074 countsByYear W29123830742022 @default.
- W2912383074 crossrefType "proceedings-article" @default.
- W2912383074 hasAuthorship W2912383074A5005215310 @default.
- W2912383074 hasAuthorship W2912383074A5014154811 @default.
- W2912383074 hasAuthorship W2912383074A5015515281 @default.
- W2912383074 hasAuthorship W2912383074A5035950527 @default.
- W2912383074 hasConcept C121332964 @default.
- W2912383074 hasConcept C153294291 @default.
- W2912383074 hasConcept C204530211 @default.
- W2912383074 hasConcept C41008148 @default.
- W2912383074 hasConceptScore W2912383074C121332964 @default.
- W2912383074 hasConceptScore W2912383074C153294291 @default.
- W2912383074 hasConceptScore W2912383074C204530211 @default.
- W2912383074 hasConceptScore W2912383074C41008148 @default.
- W2912383074 hasLocation W29123830741 @default.
- W2912383074 hasOpenAccess W2912383074 @default.
- W2912383074 hasPrimaryLocation W29123830741 @default.
- W2912383074 hasRelatedWork W2049775471 @default.
- W2912383074 hasRelatedWork W2093578348 @default.
- W2912383074 hasRelatedWork W2350741829 @default.
- W2912383074 hasRelatedWork W2358668433 @default.
- W2912383074 hasRelatedWork W2376932109 @default.
- W2912383074 hasRelatedWork W2382290278 @default.
- W2912383074 hasRelatedWork W2390279801 @default.
- W2912383074 hasRelatedWork W2748952813 @default.
- W2912383074 hasRelatedWork W2899084033 @default.
- W2912383074 hasRelatedWork W3004735627 @default.
- W2912383074 isParatext "false" @default.
- W2912383074 isRetracted "false" @default.
- W2912383074 magId "2912383074" @default.
- W2912383074 workType "article" @default.