Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912383182> ?p ?o ?g. }
- W2912383182 abstract "Advances in miniaturization have enabled the integration of high density recording and recognition elements within a single device with applications ranging from biomedical engineering to surveillance sensors. One of the challenges of high density sensing is the acquisition of high dimensional analog signals within a given power budget at a specified resolution. The underlying success of high dimensional sensing depends upon the tracking of low dimensional information manifolds embedded in a high dimensional signal space. The objective of this work is to develop theory, algorithm and hardware for an adaptive high-dimensional mixed signal analog to digital interface that can learn to determine the salient information embedded in a high dimensional analog signal space.This dissertation presents a framework for constructing a high dimensional oversampling ΣΔ (Sigma-Delta) learning algorithm and hardware that can identify and track the low-dimensional manifolds embedded in a high-dimensional analog signal space. At the core of the proposed approach is a min-max stochastic optimization of a regularized cost function that combines the machine learning principle with ΣΔ modulation. As a result, the algorithm not only produces a quantized sequence of transformed analog signals but also a quantized representation of transform itself. Thus, this algorithm naturally yields a high dimensional Spatiotemporal ΣΔ Learner (Abbrev: STL) system. This STL framework is generic and can be extended to higher-order modulators with different signal transformations. In this work, learning is demonstrated to identify the linear compression manifolds which can eliminate redundant analog-to-digital conversion (ADC) paths. This improves the energy efficiency of the proposed architecture compared to a conventional multi-channel data acquisition system. One of the salient features of this architecture is its self-calibration property in the presence of computational artifacts of mismatch, offset and nonlinearity. The proposed STL system is realized on chip as a proof of concept. The system is mapped to a mixed signal design that consists of an analog matrix vector multiplier designed with dynamic biasing technique for manifold learning and digitized interface for spatiotemporal data conversion and manifold storage. Measured results from the four dimensional STL system fabricated in a 0.5 μm CMOS process demonstrate the real-time adaptation and self-calibration capabilities that are consistent with theoretical and simulation results. This adaptation and self-calibrating capability of STL system make it suitable for implementing practical high-dimensional analog-to-digital converter. The ΣΔ learning of designed prototype has been successfully applied for source localization and bearing angle estimation using miniaturized microphone arrays. The proposed architecture is generic and can be applied to wide range of applications which include brain machine interfaces (BMI), “smart” hearing aids, high-density MEMS sensors, electro-chemical, bio-molecular sensor arrays and miniaturized RF antenna arrays." @default.
- W2912383182 created "2019-02-21" @default.
- W2912383182 creator A5033199586 @default.
- W2912383182 creator A5034498144 @default.
- W2912383182 date "2008-01-01" @default.
- W2912383182 modified "2023-09-25" @default.
- W2912383182 title "Design of high-dimensional oversampling data converters with on-chip learning: theory, algorithm and hardware realization" @default.
- W2912383182 cites W1489148534 @default.
- W2912383182 cites W1492221128 @default.
- W2912383182 cites W1523390547 @default.
- W2912383182 cites W1532657536 @default.
- W2912383182 cites W1541335817 @default.
- W2912383182 cites W1841709236 @default.
- W2912383182 cites W1946240173 @default.
- W2912383182 cites W1946421606 @default.
- W2912383182 cites W1958290988 @default.
- W2912383182 cites W1981121924 @default.
- W2912383182 cites W1981446207 @default.
- W2912383182 cites W2005795472 @default.
- W2912383182 cites W2006622572 @default.
- W2912383182 cites W2008187508 @default.
- W2912383182 cites W2020769260 @default.
- W2912383182 cites W2022733260 @default.
- W2912383182 cites W2029521171 @default.
- W2912383182 cites W2029949252 @default.
- W2912383182 cites W2031974170 @default.
- W2912383182 cites W2038068977 @default.
- W2912383182 cites W2041248708 @default.
- W2912383182 cites W2052099679 @default.
- W2912383182 cites W2053779241 @default.
- W2912383182 cites W2053914166 @default.
- W2912383182 cites W2096067080 @default.
- W2912383182 cites W2097496511 @default.
- W2912383182 cites W2098427444 @default.
- W2912383182 cites W2099559275 @default.
- W2912383182 cites W2100205120 @default.
- W2912383182 cites W2101414012 @default.
- W2912383182 cites W2103164394 @default.
- W2912383182 cites W2108724826 @default.
- W2912383182 cites W2113407714 @default.
- W2912383182 cites W2114404361 @default.
- W2912383182 cites W2115380504 @default.
- W2912383182 cites W2116548829 @default.
- W2912383182 cites W2118068838 @default.
- W2912383182 cites W2124035649 @default.
- W2912383182 cites W2124972807 @default.
- W2912383182 cites W2126462474 @default.
- W2912383182 cites W2127617367 @default.
- W2912383182 cites W2128636326 @default.
- W2912383182 cites W2130160095 @default.
- W2912383182 cites W2135310372 @default.
- W2912383182 cites W2135852119 @default.
- W2912383182 cites W2136391913 @default.
- W2912383182 cites W2137477616 @default.
- W2912383182 cites W2138559499 @default.
- W2912383182 cites W2139042938 @default.
- W2912383182 cites W2139896607 @default.
- W2912383182 cites W2141139697 @default.
- W2912383182 cites W2143375067 @default.
- W2912383182 cites W2145096794 @default.
- W2912383182 cites W2148752651 @default.
- W2912383182 cites W2148776451 @default.
- W2912383182 cites W2151115786 @default.
- W2912383182 cites W2152323008 @default.
- W2912383182 cites W2154172244 @default.
- W2912383182 cites W2155973058 @default.
- W2912383182 cites W2157586514 @default.
- W2912383182 cites W2157697090 @default.
- W2912383182 cites W2161457168 @default.
- W2912383182 cites W2162701046 @default.
- W2912383182 cites W2163630896 @default.
- W2912383182 cites W2164295796 @default.
- W2912383182 cites W2166000463 @default.
- W2912383182 cites W2171127352 @default.
- W2912383182 cites W2171648608 @default.
- W2912383182 cites W2296319761 @default.
- W2912383182 cites W2296616510 @default.
- W2912383182 cites W2766736793 @default.
- W2912383182 cites W3148152331 @default.
- W2912383182 cites W2248748051 @default.
- W2912383182 cites W999888728 @default.
- W2912383182 hasPublicationYear "2008" @default.
- W2912383182 type Work @default.
- W2912383182 sameAs 2912383182 @default.
- W2912383182 citedByCount "0" @default.
- W2912383182 crossrefType "journal-article" @default.
- W2912383182 hasAuthorship W2912383182A5033199586 @default.
- W2912383182 hasAuthorship W2912383182A5034498144 @default.
- W2912383182 hasConcept C11413529 @default.
- W2912383182 hasConcept C127413603 @default.
- W2912383182 hasConcept C13412647 @default.
- W2912383182 hasConcept C197323446 @default.
- W2912383182 hasConcept C199360897 @default.
- W2912383182 hasConcept C24326235 @default.
- W2912383182 hasConcept C2776257435 @default.
- W2912383182 hasConcept C2779843651 @default.
- W2912383182 hasConcept C31258907 @default.
- W2912383182 hasConcept C41008148 @default.
- W2912383182 hasConcept C68754193 @default.
- W2912383182 hasConcept C84462506 @default.