Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912383323> ?p ?o ?g. }
- W2912383323 endingPage "22951" @default.
- W2912383323 startingPage "22941" @default.
- W2912383323 abstract "The representation-based learning methods, such as sparse representation-based classification and low-rank representation, show effective and robust for image clustering and classification. However, these methods essentially belong to the transductive methods and they cannot deal with the new samples. Meanwhile, the original high-dimensional data contains a large amount of redundant information. If the original data are directly performed, it will not only degrade the performance of the algorithm but also lead to a sharp increase in the amount of computation. Therefore, a novel robust sparse low-rank preserving projection (SLRPP) is presented for dimensionality reduction, in which both the essential similarity structure of the observed data and the optimal feature representation are simultaneously obtained. By alternatively iterating the augmented Lagrangian multiplier method and the eigendecomposition, the framework of the SLRPP can be solved. The experimental results on six image databases proved that our SLRPP algorithm can achieve a competitive performance compared with the state-of-the-art subspace learning methods." @default.
- W2912383323 created "2019-02-21" @default.
- W2912383323 creator A5001842042 @default.
- W2912383323 creator A5002896251 @default.
- W2912383323 creator A5086927888 @default.
- W2912383323 creator A5087363347 @default.
- W2912383323 date "2019-01-01" @default.
- W2912383323 modified "2023-10-14" @default.
- W2912383323 title "Sparse Low-Rank Preserving Projection for Dimensionality Reduction" @default.
- W2912383323 cites W1985133440 @default.
- W2912383323 cites W1987486886 @default.
- W2912383323 cites W1993603321 @default.
- W2912383323 cites W1997201895 @default.
- W2912383323 cites W1998640076 @default.
- W2912383323 cites W2001141328 @default.
- W2912383323 cites W2006793117 @default.
- W2912383323 cites W2010379776 @default.
- W2912383323 cites W2034481920 @default.
- W2912383323 cites W2041657594 @default.
- W2912383323 cites W2043173011 @default.
- W2912383323 cites W2053186076 @default.
- W2912383323 cites W2065220650 @default.
- W2912383323 cites W2070127246 @default.
- W2912383323 cites W2089323474 @default.
- W2912383323 cites W2097308346 @default.
- W2912383323 cites W2106513083 @default.
- W2912383323 cites W2107799335 @default.
- W2912383323 cites W2110662122 @default.
- W2912383323 cites W2117553576 @default.
- W2912383323 cites W2121647436 @default.
- W2912383323 cites W2132549764 @default.
- W2912383323 cites W2135463994 @default.
- W2912383323 cites W2162985290 @default.
- W2912383323 cites W2166693468 @default.
- W2912383323 cites W2444009674 @default.
- W2912383323 cites W2464913182 @default.
- W2912383323 cites W2480248159 @default.
- W2912383323 cites W2518815253 @default.
- W2912383323 cites W2533064745 @default.
- W2912383323 cites W2551184801 @default.
- W2912383323 cites W2576167394 @default.
- W2912383323 cites W2608501919 @default.
- W2912383323 cites W2610492717 @default.
- W2912383323 cites W2728364730 @default.
- W2912383323 cites W2735033384 @default.
- W2912383323 cites W2804487525 @default.
- W2912383323 cites W2883818409 @default.
- W2912383323 cites W2886969606 @default.
- W2912383323 cites W745184511 @default.
- W2912383323 doi "https://doi.org/10.1109/access.2019.2893915" @default.
- W2912383323 hasPublicationYear "2019" @default.
- W2912383323 type Work @default.
- W2912383323 sameAs 2912383323 @default.
- W2912383323 citedByCount "13" @default.
- W2912383323 countsByYear W29123833232019 @default.
- W2912383323 countsByYear W29123833232020 @default.
- W2912383323 countsByYear W29123833232021 @default.
- W2912383323 countsByYear W29123833232022 @default.
- W2912383323 countsByYear W29123833232023 @default.
- W2912383323 crossrefType "journal-article" @default.
- W2912383323 hasAuthorship W2912383323A5001842042 @default.
- W2912383323 hasAuthorship W2912383323A5002896251 @default.
- W2912383323 hasAuthorship W2912383323A5086927888 @default.
- W2912383323 hasAuthorship W2912383323A5087363347 @default.
- W2912383323 hasBestOaLocation W29123833231 @default.
- W2912383323 hasConcept C104317684 @default.
- W2912383323 hasConcept C11413529 @default.
- W2912383323 hasConcept C114614502 @default.
- W2912383323 hasConcept C124066611 @default.
- W2912383323 hasConcept C150452318 @default.
- W2912383323 hasConcept C153180895 @default.
- W2912383323 hasConcept C154945302 @default.
- W2912383323 hasConcept C164226766 @default.
- W2912383323 hasConcept C17744445 @default.
- W2912383323 hasConcept C185592680 @default.
- W2912383323 hasConcept C199539241 @default.
- W2912383323 hasConcept C2776359362 @default.
- W2912383323 hasConcept C2777036070 @default.
- W2912383323 hasConcept C32834561 @default.
- W2912383323 hasConcept C33923547 @default.
- W2912383323 hasConcept C41008148 @default.
- W2912383323 hasConcept C55493867 @default.
- W2912383323 hasConcept C57493831 @default.
- W2912383323 hasConcept C63479239 @default.
- W2912383323 hasConcept C70518039 @default.
- W2912383323 hasConcept C73555534 @default.
- W2912383323 hasConcept C94625758 @default.
- W2912383323 hasConceptScore W2912383323C104317684 @default.
- W2912383323 hasConceptScore W2912383323C11413529 @default.
- W2912383323 hasConceptScore W2912383323C114614502 @default.
- W2912383323 hasConceptScore W2912383323C124066611 @default.
- W2912383323 hasConceptScore W2912383323C150452318 @default.
- W2912383323 hasConceptScore W2912383323C153180895 @default.
- W2912383323 hasConceptScore W2912383323C154945302 @default.
- W2912383323 hasConceptScore W2912383323C164226766 @default.
- W2912383323 hasConceptScore W2912383323C17744445 @default.
- W2912383323 hasConceptScore W2912383323C185592680 @default.
- W2912383323 hasConceptScore W2912383323C199539241 @default.