Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912383694> ?p ?o ?g. }
- W2912383694 endingPage "545" @default.
- W2912383694 startingPage "528" @default.
- W2912383694 abstract "In vivo trapping has been highly effective to discover substrates for the AAA+ proteases Clp, FtsH, and Lon, with most widespread use and success for the Clp system. In vitro trapping with the adaptor ClpS using cellular proteomes from different genetic backgrounds discovered many (candidate) substrates, N-degrons for ClpS substrates, and an aminotransferase (LFTR, also named AAT) involved in generating N-degrons. In vivo and in vitro substrate trapping in AAA+ protease systems has enormous potential to better understand their contribution to proteostasis across many species, environmental conditions, different developmental states, and genetic backgrounds. Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease–substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems. Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease–substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems. a specific group of ATP-dependent proteases that require ATP to unfold and translocate substrates into barrel-like proteolytic chambers for peptide bond cleavage. The Clp, FtsH, and Lon proteolytic systems are the most-studied examples. These protease systems form homo-oligomeric or heteromeric complexes, depending on the species and proteolytic system. The Clp system involves hexameric chaperone cores that can bind to adaptors and substrates, and that dock onto tetradecameric homomeric or heteromeric Clp protease cores. FtsH and Lon proteases contain both chaperone and protease domains in single polypeptides, and typically form hexamers. proteins that recognize specific degrons and deliver these degron-marked proteins to a proteolytic system. Some adaptors also function in chaperone assembly. techniques to systematically compare the protein composition and abundance among samples using mass spectrometry (MS). a portion of a protease substrate that marks the protein for selection and degradation. Degrons include N- and C-terminal amino acid residues or motifs, as well as internal regions that act as degrons when exposed at the surface. systematic identification of N-termini using (isotopic) N-terminal labeling and enrichment strategies that allow the determination of N-terminal processing and degradation events. The most popular techniques are TAILS (terminal amine isotopic labeling of substrates) and COFRADIC (combined fractional diagonal chromatography), and variants thereof. a popular method in MS-based proteomics for the relative quantification of proteins. Essentially, the number of MS/MS spectra that can be confidently matched to a protein is used as a measure of its relative abundance. This method is best used to compare the relative abundance of the same protein across multiple samples, rather than comparing the abundance of different proteins to each other. a technique that allows comparative protein quantification. Usually two types of isotopes (heavy and light) are used to differentially label proteomes (e.g., with and without a specific protease), followed by mixing and MS-based comparative protein abundance determination." @default.
- W2912383694 created "2019-02-21" @default.
- W2912383694 creator A5007969049 @default.
- W2912383694 creator A5025157207 @default.
- W2912383694 date "2019-06-01" @default.
- W2912383694 modified "2023-09-27" @default.
- W2912383694 title "Discovery of AAA+ Protease Substrates through Trapping Approaches" @default.
- W2912383694 cites W1538899778 @default.
- W2912383694 cites W1746958425 @default.
- W2912383694 cites W1787366775 @default.
- W2912383694 cites W1822680221 @default.
- W2912383694 cites W1927893666 @default.
- W2912383694 cites W1953569147 @default.
- W2912383694 cites W1966081270 @default.
- W2912383694 cites W1969634682 @default.
- W2912383694 cites W1990148399 @default.
- W2912383694 cites W1995015675 @default.
- W2912383694 cites W1995673848 @default.
- W2912383694 cites W1999236770 @default.
- W2912383694 cites W2002821316 @default.
- W2912383694 cites W2009413946 @default.
- W2912383694 cites W2016848577 @default.
- W2912383694 cites W2017188875 @default.
- W2912383694 cites W2017613141 @default.
- W2912383694 cites W2018045795 @default.
- W2912383694 cites W2022908372 @default.
- W2912383694 cites W2024940917 @default.
- W2912383694 cites W2025554716 @default.
- W2912383694 cites W2033229874 @default.
- W2912383694 cites W2033427731 @default.
- W2912383694 cites W2043712358 @default.
- W2912383694 cites W2051420589 @default.
- W2912383694 cites W2060281622 @default.
- W2912383694 cites W2069508712 @default.
- W2912383694 cites W2081774920 @default.
- W2912383694 cites W2081849427 @default.
- W2912383694 cites W2083231458 @default.
- W2912383694 cites W2088750317 @default.
- W2912383694 cites W2090408997 @default.
- W2912383694 cites W2092850779 @default.
- W2912383694 cites W2102889590 @default.
- W2912383694 cites W2108284180 @default.
- W2912383694 cites W2109233663 @default.
- W2912383694 cites W2118868063 @default.
- W2912383694 cites W2122789086 @default.
- W2912383694 cites W2127448154 @default.
- W2912383694 cites W2134915935 @default.
- W2912383694 cites W2136006404 @default.
- W2912383694 cites W2140337827 @default.
- W2912383694 cites W2140775227 @default.
- W2912383694 cites W2144010612 @default.
- W2912383694 cites W2150245222 @default.
- W2912383694 cites W2151138933 @default.
- W2912383694 cites W2151663577 @default.
- W2912383694 cites W2152231829 @default.
- W2912383694 cites W2152687832 @default.
- W2912383694 cites W2155335606 @default.
- W2912383694 cites W2162975440 @default.
- W2912383694 cites W2164118220 @default.
- W2912383694 cites W2167844024 @default.
- W2912383694 cites W2180610470 @default.
- W2912383694 cites W2214113413 @default.
- W2912383694 cites W2276517644 @default.
- W2912383694 cites W2343972246 @default.
- W2912383694 cites W2399010589 @default.
- W2912383694 cites W2514339884 @default.
- W2912383694 cites W2519691041 @default.
- W2912383694 cites W2528431093 @default.
- W2912383694 cites W2533060164 @default.
- W2912383694 cites W2534649239 @default.
- W2912383694 cites W2543713321 @default.
- W2912383694 cites W2556028929 @default.
- W2912383694 cites W2575024443 @default.
- W2912383694 cites W2587064651 @default.
- W2912383694 cites W2595844133 @default.
- W2912383694 cites W2608912893 @default.
- W2912383694 cites W2613894575 @default.
- W2912383694 cites W2726092399 @default.
- W2912383694 cites W2755866416 @default.
- W2912383694 cites W2769680011 @default.
- W2912383694 cites W2773402129 @default.
- W2912383694 cites W2796836297 @default.
- W2912383694 cites W2801069688 @default.
- W2912383694 cites W2807079364 @default.
- W2912383694 doi "https://doi.org/10.1016/j.tibs.2018.12.006" @default.
- W2912383694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30773324" @default.
- W2912383694 hasPublicationYear "2019" @default.
- W2912383694 type Work @default.
- W2912383694 sameAs 2912383694 @default.
- W2912383694 citedByCount "21" @default.
- W2912383694 countsByYear W29123836942019 @default.
- W2912383694 countsByYear W29123836942020 @default.
- W2912383694 countsByYear W29123836942021 @default.
- W2912383694 countsByYear W29123836942022 @default.
- W2912383694 countsByYear W29123836942023 @default.
- W2912383694 crossrefType "journal-article" @default.
- W2912383694 hasAuthorship W2912383694A5007969049 @default.
- W2912383694 hasAuthorship W2912383694A5025157207 @default.