Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912386632> ?p ?o ?g. }
- W2912386632 endingPage "458" @default.
- W2912386632 startingPage "445" @default.
- W2912386632 abstract "The massive adoption of hand-held devices has led to the explosion of mobile traffic volumes traversing home and enterprise networks, as well as the Internet. Traffic classification (TC), i.e., the set of procedures for inferring (mobile) applications generating such traffic, has become nowadays the enabler for highly valuable profiling information (with certain privacy downsides), other than being the workhorse for service differentiation/blocking. Nonetheless, the design of accurate classifiers is exacerbated by the raising adoption of encrypted protocols (such as TLS), hindering the suitability of (effective) deep packet inspection approaches. Also, the fast-expanding set of apps and the moving-target nature of mobile traffic makes design solutions with usual machine learning, based on manually and expert-originated features, outdated and unable to keep the pace. For these reasons deep learning (DL) is here proposed, for the first time, as a viable strategy to design practical mobile traffic classifiers based on automatically extracted features, able to cope with encrypted traffic, and reflecting their complex traffic patterns. To this end, different state-of-the-art DL techniques from (standard) TC are here reproduced, dissected (highlighting critical choices), and set into a systematic framework for comparison, including also a performance evaluation workbench. The latter outcome, although declined in the mobile context, has the applicability appeal to the wider umbrella of encrypted TC tasks. Finally, the performance of these DL classifiers is critically investigated based on an exhaustive experimental validation (based on three mobile datasets of real human users' activity), highlighting the related pitfalls, design guidelines, and challenges." @default.
- W2912386632 created "2019-02-21" @default.
- W2912386632 creator A5000897225 @default.
- W2912386632 creator A5059880462 @default.
- W2912386632 creator A5064292700 @default.
- W2912386632 creator A5068466049 @default.
- W2912386632 date "2019-06-01" @default.
- W2912386632 modified "2023-10-18" @default.
- W2912386632 title "Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges" @default.
- W2912386632 cites W1978282450 @default.
- W2912386632 cites W2002658930 @default.
- W2912386632 cites W2010716466 @default.
- W2912386632 cites W2055261595 @default.
- W2912386632 cites W2096674597 @default.
- W2912386632 cites W2108217512 @default.
- W2912386632 cites W2127939887 @default.
- W2912386632 cites W2135088779 @default.
- W2912386632 cites W2149600645 @default.
- W2912386632 cites W2188471597 @default.
- W2912386632 cites W2190207511 @default.
- W2912386632 cites W2218940187 @default.
- W2912386632 cites W2295321789 @default.
- W2912386632 cites W2343828539 @default.
- W2912386632 cites W2467159119 @default.
- W2912386632 cites W2584462177 @default.
- W2912386632 cites W2606697812 @default.
- W2912386632 cites W2743678626 @default.
- W2912386632 cites W2750674396 @default.
- W2912386632 cites W2761748950 @default.
- W2912386632 cites W2765541515 @default.
- W2912386632 cites W2768726319 @default.
- W2912386632 cites W2772303842 @default.
- W2912386632 cites W2783320270 @default.
- W2912386632 cites W2787505794 @default.
- W2912386632 cites W2792969299 @default.
- W2912386632 cites W2794826941 @default.
- W2912386632 cites W2805091420 @default.
- W2912386632 cites W2890902148 @default.
- W2912386632 cites W2898413119 @default.
- W2912386632 cites W2963360831 @default.
- W2912386632 cites W2963403784 @default.
- W2912386632 cites W2963704216 @default.
- W2912386632 cites W3103367901 @default.
- W2912386632 doi "https://doi.org/10.1109/tnsm.2019.2899085" @default.
- W2912386632 hasPublicationYear "2019" @default.
- W2912386632 type Work @default.
- W2912386632 sameAs 2912386632 @default.
- W2912386632 citedByCount "316" @default.
- W2912386632 countsByYear W29123866322019 @default.
- W2912386632 countsByYear W29123866322020 @default.
- W2912386632 countsByYear W29123866322021 @default.
- W2912386632 countsByYear W29123866322022 @default.
- W2912386632 countsByYear W29123866322023 @default.
- W2912386632 crossrefType "journal-article" @default.
- W2912386632 hasAuthorship W2912386632A5000897225 @default.
- W2912386632 hasAuthorship W2912386632A5059880462 @default.
- W2912386632 hasAuthorship W2912386632A5064292700 @default.
- W2912386632 hasAuthorship W2912386632A5068466049 @default.
- W2912386632 hasConcept C108583219 @default.
- W2912386632 hasConcept C110875604 @default.
- W2912386632 hasConcept C111919701 @default.
- W2912386632 hasConcept C119857082 @default.
- W2912386632 hasConcept C124101348 @default.
- W2912386632 hasConcept C136764020 @default.
- W2912386632 hasConcept C148730421 @default.
- W2912386632 hasConcept C151730666 @default.
- W2912386632 hasConcept C154945302 @default.
- W2912386632 hasConcept C158379750 @default.
- W2912386632 hasConcept C169988225 @default.
- W2912386632 hasConcept C186967261 @default.
- W2912386632 hasConcept C187191949 @default.
- W2912386632 hasConcept C204679922 @default.
- W2912386632 hasConcept C2779343474 @default.
- W2912386632 hasConcept C38652104 @default.
- W2912386632 hasConcept C41008148 @default.
- W2912386632 hasConcept C86803240 @default.
- W2912386632 hasConceptScore W2912386632C108583219 @default.
- W2912386632 hasConceptScore W2912386632C110875604 @default.
- W2912386632 hasConceptScore W2912386632C111919701 @default.
- W2912386632 hasConceptScore W2912386632C119857082 @default.
- W2912386632 hasConceptScore W2912386632C124101348 @default.
- W2912386632 hasConceptScore W2912386632C136764020 @default.
- W2912386632 hasConceptScore W2912386632C148730421 @default.
- W2912386632 hasConceptScore W2912386632C151730666 @default.
- W2912386632 hasConceptScore W2912386632C154945302 @default.
- W2912386632 hasConceptScore W2912386632C158379750 @default.
- W2912386632 hasConceptScore W2912386632C169988225 @default.
- W2912386632 hasConceptScore W2912386632C186967261 @default.
- W2912386632 hasConceptScore W2912386632C187191949 @default.
- W2912386632 hasConceptScore W2912386632C204679922 @default.
- W2912386632 hasConceptScore W2912386632C2779343474 @default.
- W2912386632 hasConceptScore W2912386632C38652104 @default.
- W2912386632 hasConceptScore W2912386632C41008148 @default.
- W2912386632 hasConceptScore W2912386632C86803240 @default.
- W2912386632 hasIssue "2" @default.
- W2912386632 hasLocation W29123866321 @default.
- W2912386632 hasOpenAccess W2912386632 @default.
- W2912386632 hasPrimaryLocation W29123866321 @default.