Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912389474> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2912389474 abstract "The increasing use of big datasets by analytics applications for higher predictive power leads to higher processing overhead, and the overhead becomes more substantial when datasets are larger than memory capacity. In this paper, we focus on reducing I/O overhead for big data machine learning procedures, including both unsupervised and supervised learning. While I/O data are, in general, not reducible in well-developed applications, our approach to I/O overhead reduction is to overlap I/O’s with computations so that when an application is performing an I/O, other useful computation is also processed. To this end, we develop an I/O latency-hiding (LaHiIO) strategy and an enabling easy-to-use API, a wrapper of existing asynchronous I/O operations, by hiding away features not likely needed for general data analytics applications and keeping only those necessary for computation-I/O overlapping. By doing so, we aim to increase the use of computation-I/O overlapping in big data applications by a broad range of developers who could be physicists, chemists, biologists, engineers, but not necessarily system programming experts. We apply the LaHiIO strategy to clustering and neural network procedures, the common choices for unsupervised and supervised learning, resulting in significant performance enhancement from about 10% to 150%, indicating the effectiveness of the LaHiIO strategy and its enabling user-friendly API for big data machine learning applications." @default.
- W2912389474 created "2019-02-21" @default.
- W2912389474 creator A5011533814 @default.
- W2912389474 creator A5028690312 @default.
- W2912389474 creator A5036783104 @default.
- W2912389474 creator A5041388008 @default.
- W2912389474 date "2018-12-01" @default.
- W2912389474 modified "2023-10-16" @default.
- W2912389474 title "LaHiIO: Accelerating Persistent Big Data Machine Learning via Latency Hiding IOs" @default.
- W2912389474 cites W1651093245 @default.
- W2912389474 cites W2057907879 @default.
- W2912389474 cites W2125621954 @default.
- W2912389474 cites W2127218421 @default.
- W2912389474 cites W2150593711 @default.
- W2912389474 cites W2585372799 @default.
- W2912389474 cites W2587094051 @default.
- W2912389474 cites W2893712976 @default.
- W2912389474 cites W3103589224 @default.
- W2912389474 doi "https://doi.org/10.1109/bigdata.2018.8622181" @default.
- W2912389474 hasPublicationYear "2018" @default.
- W2912389474 type Work @default.
- W2912389474 sameAs 2912389474 @default.
- W2912389474 citedByCount "0" @default.
- W2912389474 crossrefType "proceedings-article" @default.
- W2912389474 hasAuthorship W2912389474A5011533814 @default.
- W2912389474 hasAuthorship W2912389474A5028690312 @default.
- W2912389474 hasAuthorship W2912389474A5036783104 @default.
- W2912389474 hasAuthorship W2912389474A5041388008 @default.
- W2912389474 hasConcept C108583219 @default.
- W2912389474 hasConcept C111919701 @default.
- W2912389474 hasConcept C11413529 @default.
- W2912389474 hasConcept C119857082 @default.
- W2912389474 hasConcept C124101348 @default.
- W2912389474 hasConcept C151319957 @default.
- W2912389474 hasConcept C154945302 @default.
- W2912389474 hasConcept C2779960059 @default.
- W2912389474 hasConcept C31258907 @default.
- W2912389474 hasConcept C41008148 @default.
- W2912389474 hasConcept C45374587 @default.
- W2912389474 hasConcept C46637626 @default.
- W2912389474 hasConcept C50644808 @default.
- W2912389474 hasConcept C73555534 @default.
- W2912389474 hasConcept C75684735 @default.
- W2912389474 hasConcept C76155785 @default.
- W2912389474 hasConcept C79158427 @default.
- W2912389474 hasConcept C8038995 @default.
- W2912389474 hasConcept C82876162 @default.
- W2912389474 hasConceptScore W2912389474C108583219 @default.
- W2912389474 hasConceptScore W2912389474C111919701 @default.
- W2912389474 hasConceptScore W2912389474C11413529 @default.
- W2912389474 hasConceptScore W2912389474C119857082 @default.
- W2912389474 hasConceptScore W2912389474C124101348 @default.
- W2912389474 hasConceptScore W2912389474C151319957 @default.
- W2912389474 hasConceptScore W2912389474C154945302 @default.
- W2912389474 hasConceptScore W2912389474C2779960059 @default.
- W2912389474 hasConceptScore W2912389474C31258907 @default.
- W2912389474 hasConceptScore W2912389474C41008148 @default.
- W2912389474 hasConceptScore W2912389474C45374587 @default.
- W2912389474 hasConceptScore W2912389474C46637626 @default.
- W2912389474 hasConceptScore W2912389474C50644808 @default.
- W2912389474 hasConceptScore W2912389474C73555534 @default.
- W2912389474 hasConceptScore W2912389474C75684735 @default.
- W2912389474 hasConceptScore W2912389474C76155785 @default.
- W2912389474 hasConceptScore W2912389474C79158427 @default.
- W2912389474 hasConceptScore W2912389474C8038995 @default.
- W2912389474 hasConceptScore W2912389474C82876162 @default.
- W2912389474 hasLocation W29123894741 @default.
- W2912389474 hasOpenAccess W2912389474 @default.
- W2912389474 hasPrimaryLocation W29123894741 @default.
- W2912389474 hasRelatedWork W1491343858 @default.
- W2912389474 hasRelatedWork W2486847405 @default.
- W2912389474 hasRelatedWork W2772434162 @default.
- W2912389474 hasRelatedWork W2912389474 @default.
- W2912389474 hasRelatedWork W3123344745 @default.
- W2912389474 hasRelatedWork W3124304076 @default.
- W2912389474 hasRelatedWork W3158877728 @default.
- W2912389474 hasRelatedWork W3193453725 @default.
- W2912389474 hasRelatedWork W4220926404 @default.
- W2912389474 hasRelatedWork W4221136938 @default.
- W2912389474 isParatext "false" @default.
- W2912389474 isRetracted "false" @default.
- W2912389474 magId "2912389474" @default.
- W2912389474 workType "article" @default.