Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912390055> ?p ?o ?g. }
- W2912390055 endingPage "117" @default.
- W2912390055 startingPage "104" @default.
- W2912390055 abstract "Recently, mobile devices, such as smartphones, have been introduced into healthcare research to substitute paper diaries as data-collection tools in the home environment. Such devices support collecting patient data at different time points over a long period, resulting in clinical time-series data with high temporal complexity, such as time irregularities. Analysis of such time series poses new challenges for machine-learning techniques. The clinical context for the research discussed in this paper is home monitoring in chronic obstructive pulmonary disease (COPD).The goal of the present research is to find out which properties of temporal Bayesian network models allow to cope best with irregularly spaced multivariate clinical time-series data.Two mainstream temporal Bayesian network models of multivariate clinical time series are studied: dynamic Bayesian networks, where the system is described as a snapshot at discrete time points, and continuous time Bayesian networks, where transitions between states are modeled in continuous time. Their capability of learning from clinical time series that vary in nature are extensively studied. In order to compare the two temporal Bayesian network types for regularly and irregularly spaced time-series data, three typical ways of observing time-series data were investigated: (1) regularly spaced in time with a fixed rate; (2) irregularly spaced and missing completely at random at discrete time points; (3) irregularly spaced and missing at random at discrete time points. In addition, similar experiments were carried out using real-world COPD patient data where observations are unevenly spaced.For regularly spaced time series, the dynamic Bayesian network models outperform the continuous time Bayesian networks. Similarly, if the data is missing completely at random, discrete-time models outperform continuous time models in most situations. For more realistic settings where data is not missing completely at random, the situation is more complicated. In simulation experiments, both models perform similarly if there is strong prior knowledge available about the missing data distribution. Otherwise, continuous time Bayesian networks perform better. In experiments with unevenly spaced real-world data, we surprisingly found that a dynamic Bayesian network where time is ignored performs similar to a continuous time Bayesian network.The results confirm conventional wisdom that discrete-time Bayesian networks are appropriate when learning from regularly spaced clinical time series. Similarly, we found that time series where the missingness occurs completely at random, dynamic Bayesian networks are an appropriate choice. However, for complex clinical time-series data that motivated this research, the continuous-time models are at least competitive and sometimes better than their discrete-time counterparts. Furthermore, continuous-time models provide additional benefits of being able to provide more fine-grained predictions than discrete-time models, which will be of practical relevance in clinical applications." @default.
- W2912390055 created "2019-02-21" @default.
- W2912390055 creator A5007761892 @default.
- W2912390055 creator A5013724338 @default.
- W2912390055 creator A5015729540 @default.
- W2912390055 creator A5020281960 @default.
- W2912390055 creator A5067441776 @default.
- W2912390055 creator A5087758199 @default.
- W2912390055 date "2019-04-01" @default.
- W2912390055 modified "2023-10-18" @default.
- W2912390055 title "A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity" @default.
- W2912390055 cites W1776775909 @default.
- W2912390055 cites W1968888496 @default.
- W2912390055 cites W1973742535 @default.
- W2912390055 cites W1975379468 @default.
- W2912390055 cites W1977512462 @default.
- W2912390055 cites W1995153873 @default.
- W2912390055 cites W1996651273 @default.
- W2912390055 cites W2010967671 @default.
- W2912390055 cites W2012204440 @default.
- W2912390055 cites W2012519534 @default.
- W2912390055 cites W2012733121 @default.
- W2912390055 cites W2013189577 @default.
- W2912390055 cites W2027510812 @default.
- W2912390055 cites W2062485224 @default.
- W2912390055 cites W2087772818 @default.
- W2912390055 cites W2102539288 @default.
- W2912390055 cites W2131829840 @default.
- W2912390055 cites W2141838497 @default.
- W2912390055 cites W2143337123 @default.
- W2912390055 cites W2158527642 @default.
- W2912390055 cites W2163672276 @default.
- W2912390055 cites W2164016305 @default.
- W2912390055 cites W2164351502 @default.
- W2912390055 cites W2167867148 @default.
- W2912390055 cites W2169540726 @default.
- W2912390055 cites W2268560470 @default.
- W2912390055 cites W2301865499 @default.
- W2912390055 cites W2301884459 @default.
- W2912390055 cites W2345746582 @default.
- W2912390055 cites W3103408694 @default.
- W2912390055 doi "https://doi.org/10.1016/j.artmed.2018.10.002" @default.
- W2912390055 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30683464" @default.
- W2912390055 hasPublicationYear "2019" @default.
- W2912390055 type Work @default.
- W2912390055 sameAs 2912390055 @default.
- W2912390055 citedByCount "17" @default.
- W2912390055 countsByYear W29123900552019 @default.
- W2912390055 countsByYear W29123900552020 @default.
- W2912390055 countsByYear W29123900552021 @default.
- W2912390055 countsByYear W29123900552022 @default.
- W2912390055 countsByYear W29123900552023 @default.
- W2912390055 crossrefType "journal-article" @default.
- W2912390055 hasAuthorship W2912390055A5007761892 @default.
- W2912390055 hasAuthorship W2912390055A5013724338 @default.
- W2912390055 hasAuthorship W2912390055A5015729540 @default.
- W2912390055 hasAuthorship W2912390055A5020281960 @default.
- W2912390055 hasAuthorship W2912390055A5067441776 @default.
- W2912390055 hasAuthorship W2912390055A5087758199 @default.
- W2912390055 hasConcept C107038049 @default.
- W2912390055 hasConcept C107673813 @default.
- W2912390055 hasConcept C111919701 @default.
- W2912390055 hasConcept C119857082 @default.
- W2912390055 hasConcept C124101348 @default.
- W2912390055 hasConcept C138885662 @default.
- W2912390055 hasConcept C143724316 @default.
- W2912390055 hasConcept C151406439 @default.
- W2912390055 hasConcept C151730666 @default.
- W2912390055 hasConcept C154945302 @default.
- W2912390055 hasConcept C160234255 @default.
- W2912390055 hasConcept C161584116 @default.
- W2912390055 hasConcept C2779343474 @default.
- W2912390055 hasConcept C2779466056 @default.
- W2912390055 hasConcept C33724603 @default.
- W2912390055 hasConcept C41008148 @default.
- W2912390055 hasConcept C55282118 @default.
- W2912390055 hasConcept C71983512 @default.
- W2912390055 hasConcept C77277458 @default.
- W2912390055 hasConcept C86803240 @default.
- W2912390055 hasConcept C9357733 @default.
- W2912390055 hasConceptScore W2912390055C107038049 @default.
- W2912390055 hasConceptScore W2912390055C107673813 @default.
- W2912390055 hasConceptScore W2912390055C111919701 @default.
- W2912390055 hasConceptScore W2912390055C119857082 @default.
- W2912390055 hasConceptScore W2912390055C124101348 @default.
- W2912390055 hasConceptScore W2912390055C138885662 @default.
- W2912390055 hasConceptScore W2912390055C143724316 @default.
- W2912390055 hasConceptScore W2912390055C151406439 @default.
- W2912390055 hasConceptScore W2912390055C151730666 @default.
- W2912390055 hasConceptScore W2912390055C154945302 @default.
- W2912390055 hasConceptScore W2912390055C160234255 @default.
- W2912390055 hasConceptScore W2912390055C161584116 @default.
- W2912390055 hasConceptScore W2912390055C2779343474 @default.
- W2912390055 hasConceptScore W2912390055C2779466056 @default.
- W2912390055 hasConceptScore W2912390055C33724603 @default.
- W2912390055 hasConceptScore W2912390055C41008148 @default.
- W2912390055 hasConceptScore W2912390055C55282118 @default.
- W2912390055 hasConceptScore W2912390055C71983512 @default.