Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912393903> ?p ?o ?g. }
- W2912393903 endingPage "394" @default.
- W2912393903 startingPage "368" @default.
- W2912393903 abstract "Abstract Cancer is well recognized as a complex disease with dysregulated molecular networks or modules. Graph- and rule-based analytics have been applied extensively for cancer classification as well as prognosis using large genomic and other data over the past decade. This article provides a comprehensive review of various graph- and rule-based machine learning algorithms that have been applied to numerous genomics data to determine the cancer-specific gene modules, identify gene signature-based classifiers and carry out other related objectives of potential therapeutic value. This review focuses mainly on the methodological design and features of these algorithms to facilitate the application of these graph- and rule-based analytical approaches for cancer classification and prognosis. Based on the type of data integration, we divided all the algorithms into three categories: model-based integration, pre-processing integration and post-processing integration. Each category is further divided into four sub-categories (supervised, unsupervised, semi-supervised and survival-driven learning analyses) based on learning style. Therefore, a total of 11 categories of methods are summarized with their inputs, objectives and description, advantages and potential limitations. Next, we briefly demonstrate well-known and most recently developed algorithms for each sub-category along with salient information, such as data profiles, statistical or feature selection methods and outputs. Finally, we summarize the appropriate use and efficiency of all categories of graph- and rule mining-based learning methods when input data and specific objective are given. This review aims to help readers to select and use the appropriate algorithms for cancer classification and prognosis study." @default.
- W2912393903 created "2019-02-21" @default.
- W2912393903 creator A5006688612 @default.
- W2912393903 creator A5033317672 @default.
- W2912393903 date "2019-01-11" @default.
- W2912393903 modified "2023-09-26" @default.
- W2912393903 title "Graph- and rule-based learning algorithms: a comprehensive review of their applications for cancer type classification and prognosis using genomic data" @default.
- W2912393903 cites W1502421007 @default.
- W2912393903 cites W1966327575 @default.
- W2912393903 cites W1967827763 @default.
- W2912393903 cites W1968667083 @default.
- W2912393903 cites W1978552335 @default.
- W2912393903 cites W1980580055 @default.
- W2912393903 cites W1986831602 @default.
- W2912393903 cites W1987219048 @default.
- W2912393903 cites W1988592429 @default.
- W2912393903 cites W1992045522 @default.
- W2912393903 cites W1992383350 @default.
- W2912393903 cites W2000124990 @default.
- W2912393903 cites W2005388951 @default.
- W2912393903 cites W2008929650 @default.
- W2912393903 cites W2010457001 @default.
- W2912393903 cites W2013715930 @default.
- W2912393903 cites W2018045523 @default.
- W2912393903 cites W2022401242 @default.
- W2912393903 cites W2023416945 @default.
- W2912393903 cites W2023461603 @default.
- W2912393903 cites W2034635698 @default.
- W2912393903 cites W2042221522 @default.
- W2912393903 cites W2049499151 @default.
- W2912393903 cites W2056482097 @default.
- W2912393903 cites W2061997283 @default.
- W2912393903 cites W2063928888 @default.
- W2912393903 cites W2065341127 @default.
- W2912393903 cites W2065760681 @default.
- W2912393903 cites W2072589422 @default.
- W2912393903 cites W2073307618 @default.
- W2912393903 cites W2074297532 @default.
- W2912393903 cites W2076944961 @default.
- W2912393903 cites W2079210771 @default.
- W2912393903 cites W2081098333 @default.
- W2912393903 cites W2082253757 @default.
- W2912393903 cites W2082315464 @default.
- W2912393903 cites W2088891952 @default.
- W2912393903 cites W2095319945 @default.
- W2912393903 cites W2095763169 @default.
- W2912393903 cites W2099892456 @default.
- W2912393903 cites W2100438487 @default.
- W2912393903 cites W2100714130 @default.
- W2912393903 cites W2103923312 @default.
- W2912393903 cites W2105245626 @default.
- W2912393903 cites W2105351532 @default.
- W2912393903 cites W2105883975 @default.
- W2912393903 cites W2108191052 @default.
- W2912393903 cites W2109761160 @default.
- W2912393903 cites W2110313379 @default.
- W2912393903 cites W2110687686 @default.
- W2912393903 cites W2112811019 @default.
- W2912393903 cites W2115580179 @default.
- W2912393903 cites W2116063398 @default.
- W2912393903 cites W2117321698 @default.
- W2912393903 cites W2117968640 @default.
- W2912393903 cites W2121604817 @default.
- W2912393903 cites W2123733630 @default.
- W2912393903 cites W2130158951 @default.
- W2912393903 cites W2130186565 @default.
- W2912393903 cites W2132623845 @default.
- W2912393903 cites W2134662941 @default.
- W2912393903 cites W2137219016 @default.
- W2912393903 cites W2137531873 @default.
- W2912393903 cites W2139967559 @default.
- W2912393903 cites W2141599838 @default.
- W2912393903 cites W2143416770 @default.
- W2912393903 cites W2144940507 @default.
- W2912393903 cites W2149772057 @default.
- W2912393903 cites W2150258208 @default.
- W2912393903 cites W2154061034 @default.
- W2912393903 cites W2154164391 @default.
- W2912393903 cites W2154947819 @default.
- W2912393903 cites W2155205047 @default.
- W2912393903 cites W2156166905 @default.
- W2912393903 cites W2158721310 @default.
- W2912393903 cites W2159547203 @default.
- W2912393903 cites W2161444669 @default.
- W2912393903 cites W2164786997 @default.
- W2912393903 cites W2165015714 @default.
- W2912393903 cites W2165342893 @default.
- W2912393903 cites W2166559705 @default.
- W2912393903 cites W2167190345 @default.
- W2912393903 cites W2168517816 @default.
- W2912393903 cites W2170682402 @default.
- W2912393903 cites W2194503871 @default.
- W2912393903 cites W2218566206 @default.
- W2912393903 cites W2254019636 @default.
- W2912393903 cites W2264481086 @default.
- W2912393903 cites W2326532020 @default.
- W2912393903 cites W2484145743 @default.
- W2912393903 cites W2541638185 @default.