Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912397543> ?p ?o ?g. }
- W2912397543 endingPage "150" @default.
- W2912397543 startingPage "143" @default.
- W2912397543 abstract "With unprecedented amounts of materials data generated from experiments as well as high-throughput density functional theory calculations, machine learning techniques has the potential to greatly accelerate materials discovery and design. Here, we review our efforts in the Materials Virtual Lab to integrate software automation, data generation and curation and machine learning to (i) design and optimize technological materials for energy storage, energy efficiency and high-temperature alloys; (ii) develop scalable quantum-accurate models, and (iii) enhance the speed and accuracy in interpreting characterization spectra." @default.
- W2912397543 created "2019-02-21" @default.
- W2912397543 creator A5002723657 @default.
- W2912397543 date "2019-04-01" @default.
- W2912397543 modified "2023-10-04" @default.
- W2912397543 title "Accelerating materials science with high-throughput computations and machine learning" @default.
- W2912397543 cites W1124112037 @default.
- W2912397543 cites W1215246165 @default.
- W2912397543 cites W1662595031 @default.
- W2912397543 cites W1798528872 @default.
- W2912397543 cites W1865667476 @default.
- W2912397543 cites W1971643633 @default.
- W2912397543 cites W1976492731 @default.
- W2912397543 cites W1981368803 @default.
- W2912397543 cites W1985628158 @default.
- W2912397543 cites W1992985800 @default.
- W2912397543 cites W1998010646 @default.
- W2912397543 cites W1999826216 @default.
- W2912397543 cites W2003360724 @default.
- W2912397543 cites W2003857593 @default.
- W2912397543 cites W2006118109 @default.
- W2912397543 cites W2012284610 @default.
- W2912397543 cites W2015197254 @default.
- W2912397543 cites W2024825377 @default.
- W2912397543 cites W2029234968 @default.
- W2912397543 cites W2029413789 @default.
- W2912397543 cites W2029541996 @default.
- W2912397543 cites W2030976617 @default.
- W2912397543 cites W2032705911 @default.
- W2912397543 cites W2033941268 @default.
- W2912397543 cites W2035158988 @default.
- W2912397543 cites W2042391643 @default.
- W2912397543 cites W2049537702 @default.
- W2912397543 cites W2052663622 @default.
- W2912397543 cites W2060745946 @default.
- W2912397543 cites W2063808391 @default.
- W2912397543 cites W2075173505 @default.
- W2912397543 cites W2096694960 @default.
- W2912397543 cites W2110639779 @default.
- W2912397543 cites W2113234830 @default.
- W2912397543 cites W2117363206 @default.
- W2912397543 cites W2123466866 @default.
- W2912397543 cites W2134164499 @default.
- W2912397543 cites W2143561996 @default.
- W2912397543 cites W2150507041 @default.
- W2912397543 cites W2152152303 @default.
- W2912397543 cites W2153511586 @default.
- W2912397543 cites W2160174308 @default.
- W2912397543 cites W2230728100 @default.
- W2912397543 cites W2255354333 @default.
- W2912397543 cites W2290576428 @default.
- W2912397543 cites W2295808175 @default.
- W2912397543 cites W2297042119 @default.
- W2912397543 cites W2313966941 @default.
- W2912397543 cites W2324167872 @default.
- W2912397543 cites W2330625839 @default.
- W2912397543 cites W2331364947 @default.
- W2912397543 cites W2336601746 @default.
- W2912397543 cites W2338845968 @default.
- W2912397543 cites W2438541361 @default.
- W2912397543 cites W2466777838 @default.
- W2912397543 cites W2480797323 @default.
- W2912397543 cites W2482240159 @default.
- W2912397543 cites W2496671543 @default.
- W2912397543 cites W2499858957 @default.
- W2912397543 cites W2507198627 @default.
- W2912397543 cites W2509907061 @default.
- W2912397543 cites W2518696367 @default.
- W2912397543 cites W2522940439 @default.
- W2912397543 cites W2556546256 @default.
- W2912397543 cites W2565803907 @default.
- W2912397543 cites W2580767461 @default.
- W2912397543 cites W2589715311 @default.
- W2912397543 cites W2602677896 @default.
- W2912397543 cites W2604900221 @default.
- W2912397543 cites W26088913 @default.
- W2912397543 cites W2616519837 @default.
- W2912397543 cites W2725771565 @default.
- W2912397543 cites W2739074469 @default.
- W2912397543 cites W2742492277 @default.
- W2912397543 cites W2759818122 @default.
- W2912397543 cites W2766447205 @default.
- W2912397543 cites W2775270918 @default.
- W2912397543 cites W2777162720 @default.
- W2912397543 cites W2784163848 @default.
- W2912397543 cites W2788925906 @default.
- W2912397543 cites W2795510410 @default.
- W2912397543 cites W2797749376 @default.
- W2912397543 cites W2799667365 @default.
- W2912397543 cites W2801870733 @default.
- W2912397543 cites W2807890728 @default.
- W2912397543 cites W2811207405 @default.
- W2912397543 cites W2887016934 @default.
- W2912397543 cites W2919115771 @default.
- W2912397543 cites W2963327119 @default.
- W2912397543 cites W3099236691 @default.
- W2912397543 doi "https://doi.org/10.1016/j.commatsci.2019.01.013" @default.
- W2912397543 hasPublicationYear "2019" @default.