Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912403940> ?p ?o ?g. }
- W2912403940 endingPage "180" @default.
- W2912403940 startingPage "166" @default.
- W2912403940 abstract "Thanks to the improvement of technologies such as Internet of Things, bio-sensing and data mining, smart wearable technologies have recently received increasing attention for teenagers’ sport and health monitoring. Despite the powerful data-acquisition ability of the current wearable products on the market, they still suffer performance deficiency in valuable knowledge extraction due to the lack of accurate computational model and in-depth data analysis. Based on this, this paper proposes a machine learning based physical fitness evaluation model oriented to wearable running monitoring for teenagers, in which a variant of the gradient boosting machine (GBM) combined with advanced feature selection and Bayesian hyper-parameter optimization is employed to build a physical fitness evaluation model. To begin with, we design a special experimental paradigm for data acquisition based on a conventional running activity, in which a group of teenagers’ photoplethysmography (PPG) signals in different testing stages are collected by a set of smartbands developed by ourselves. Next, PPG signals are processed in four steps which match with the four modules in the proposed model including signal preprocessing, physiological data estimation, feature engineering and classification modules. Firstly, the signal preprocessing module aims for suppressing noise and removing baseline drift in PPG signals by using a smoothness prior approach (SPA) and a median filter (MF), respectively. Secondly, the physiological data estimation module achieves conversion from PPG signals to physiological data such as heart rate (HR) and blood oxygen saturation (SpO2). Thirdly, the feature engineering module extracts from the physiological data a group of key features closely related to physical fitness statuses, and then implements a novel advanced feature selection scheme by using Pearson correlation and importance score ranking based sequential forward search (PC-ISR-SFS). Fourthly, the classification module utilizes an extreme gradient boosting (XGBoost) algorithm for classification of each teenager's physical fitness level, in which hyper-parameters are adaptively tuned with Bayesian optimization. Experimental results demonstrate that not only does the proposed model achieve higher evaluation accuracy than the existing reference models, but it also provides a promising solution to future physical fitness evaluation for teenagers through a machine-learning-model based intelligent computing instead of traditional empirical-model based manual calculation." @default.
- W2912403940 created "2019-02-21" @default.
- W2912403940 creator A5012339380 @default.
- W2912403940 creator A5013074509 @default.
- W2912403940 creator A5030902303 @default.
- W2912403940 creator A5058990428 @default.
- W2912403940 creator A5062476895 @default.
- W2912403940 creator A5076934078 @default.
- W2912403940 creator A5080198239 @default.
- W2912403940 date "2019-03-01" @default.
- W2912403940 modified "2023-10-18" @default.
- W2912403940 title "An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring" @default.
- W2912403940 cites W1070793310 @default.
- W2912403940 cites W1437335841 @default.
- W2912403940 cites W1678356000 @default.
- W2912403940 cites W1689711448 @default.
- W2912403940 cites W1963676251 @default.
- W2912403940 cites W1967130062 @default.
- W2912403940 cites W1968569308 @default.
- W2912403940 cites W1983727766 @default.
- W2912403940 cites W2000738254 @default.
- W2912403940 cites W2005741801 @default.
- W2912403940 cites W2050284630 @default.
- W2912403940 cites W2070030549 @default.
- W2912403940 cites W2088969535 @default.
- W2912403940 cites W2100716893 @default.
- W2912403940 cites W2111178196 @default.
- W2912403940 cites W2122111042 @default.
- W2912403940 cites W2144360571 @default.
- W2912403940 cites W2151713296 @default.
- W2912403940 cites W2164555448 @default.
- W2912403940 cites W2293066912 @default.
- W2912403940 cites W2318588083 @default.
- W2912403940 cites W2326764731 @default.
- W2912403940 cites W2491650592 @default.
- W2912403940 cites W2551678781 @default.
- W2912403940 cites W2586297576 @default.
- W2912403940 cites W2593628220 @default.
- W2912403940 cites W4239510810 @default.
- W2912403940 doi "https://doi.org/10.1016/j.comnet.2019.01.026" @default.
- W2912403940 hasPublicationYear "2019" @default.
- W2912403940 type Work @default.
- W2912403940 sameAs 2912403940 @default.
- W2912403940 citedByCount "84" @default.
- W2912403940 countsByYear W29124039402019 @default.
- W2912403940 countsByYear W29124039402020 @default.
- W2912403940 countsByYear W29124039402021 @default.
- W2912403940 countsByYear W29124039402022 @default.
- W2912403940 countsByYear W29124039402023 @default.
- W2912403940 crossrefType "journal-article" @default.
- W2912403940 hasAuthorship W2912403940A5012339380 @default.
- W2912403940 hasAuthorship W2912403940A5013074509 @default.
- W2912403940 hasAuthorship W2912403940A5030902303 @default.
- W2912403940 hasAuthorship W2912403940A5058990428 @default.
- W2912403940 hasAuthorship W2912403940A5062476895 @default.
- W2912403940 hasAuthorship W2912403940A5076934078 @default.
- W2912403940 hasAuthorship W2912403940A5080198239 @default.
- W2912403940 hasConcept C10551718 @default.
- W2912403940 hasConcept C106131492 @default.
- W2912403940 hasConcept C108583219 @default.
- W2912403940 hasConcept C116390426 @default.
- W2912403940 hasConcept C119857082 @default.
- W2912403940 hasConcept C12267149 @default.
- W2912403940 hasConcept C124101348 @default.
- W2912403940 hasConcept C148483581 @default.
- W2912403940 hasConcept C149635348 @default.
- W2912403940 hasConcept C150594956 @default.
- W2912403940 hasConcept C153180895 @default.
- W2912403940 hasConcept C154945302 @default.
- W2912403940 hasConcept C2778827112 @default.
- W2912403940 hasConcept C31972630 @default.
- W2912403940 hasConcept C34736171 @default.
- W2912403940 hasConcept C41008148 @default.
- W2912403940 hasConcept C52001869 @default.
- W2912403940 hasConcept C52622490 @default.
- W2912403940 hasConcept C54290928 @default.
- W2912403940 hasConcept C60777511 @default.
- W2912403940 hasConcept C89198739 @default.
- W2912403940 hasConceptScore W2912403940C10551718 @default.
- W2912403940 hasConceptScore W2912403940C106131492 @default.
- W2912403940 hasConceptScore W2912403940C108583219 @default.
- W2912403940 hasConceptScore W2912403940C116390426 @default.
- W2912403940 hasConceptScore W2912403940C119857082 @default.
- W2912403940 hasConceptScore W2912403940C12267149 @default.
- W2912403940 hasConceptScore W2912403940C124101348 @default.
- W2912403940 hasConceptScore W2912403940C148483581 @default.
- W2912403940 hasConceptScore W2912403940C149635348 @default.
- W2912403940 hasConceptScore W2912403940C150594956 @default.
- W2912403940 hasConceptScore W2912403940C153180895 @default.
- W2912403940 hasConceptScore W2912403940C154945302 @default.
- W2912403940 hasConceptScore W2912403940C2778827112 @default.
- W2912403940 hasConceptScore W2912403940C31972630 @default.
- W2912403940 hasConceptScore W2912403940C34736171 @default.
- W2912403940 hasConceptScore W2912403940C41008148 @default.
- W2912403940 hasConceptScore W2912403940C52001869 @default.
- W2912403940 hasConceptScore W2912403940C52622490 @default.
- W2912403940 hasConceptScore W2912403940C54290928 @default.
- W2912403940 hasConceptScore W2912403940C60777511 @default.