Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912404939> ?p ?o ?g. }
- W2912404939 abstract "The understanding of talent flow is critical for sharpening company talent strategy to keep competitiveness in the current fast-evolving environment. Existing studies on talent flow analysis generally rely on subjective surveys. However, without large-scale quantitative studies, there are limits to deliver fine-grained predictive business insights for better talent management. To this end, in this paper, we aim to introduce a big data-driven approach for predictive talent flow analysis. Specifically, we first construct a time-aware job transition tensor by mining the large-scale job transition records of digital resumes from online professional networks (OPNs), where each entry refers to a fine-grained talent flow rate of a specific job position between two companies. Then, we design a dynamic latent factor based Evolving Tensor Factorization (ETF) model for predicting the future talent flows. In particular, a novel evolving feature by jointly considering the influence of previous talent flows and global market is introduced for modeling the evolving nature of each company. Furthermore, to improve the predictive performance, we also integrate several representative attributes of companies as side information for regulating the model inference. Finally, we conduct extensive experiments on large-scale real-world data for evaluating the model performances. The experimental results clearly validate the effectiveness of our approach compared with state-of-the-art baselines in terms of talent flow forecast. Meanwhile, the results also reveal some interesting findings on the regularity of talent flows, e.g. Facebook becomes more and more attractive for the engineers from Google in 2016." @default.
- W2912404939 created "2019-02-21" @default.
- W2912404939 creator A5025292786 @default.
- W2912404939 creator A5028225506 @default.
- W2912404939 creator A5030341301 @default.
- W2912404939 creator A5048237545 @default.
- W2912404939 creator A5049015446 @default.
- W2912404939 creator A5067731925 @default.
- W2912404939 creator A5082943001 @default.
- W2912404939 date "2019-05-13" @default.
- W2912404939 modified "2023-10-16" @default.
- W2912404939 title "Large-Scale Talent Flow Forecast with Dynamic Latent Factor Model?" @default.
- W2912404939 cites W114517082 @default.
- W2912404939 cites W1500188831 @default.
- W2912404939 cites W1993541285 @default.
- W2912404939 cites W2011669536 @default.
- W2912404939 cites W2013912476 @default.
- W2912404939 cites W2024165284 @default.
- W2912404939 cites W2033775920 @default.
- W2912404939 cites W2048587746 @default.
- W2912404939 cites W2054141820 @default.
- W2912404939 cites W2057991616 @default.
- W2912404939 cites W2075965721 @default.
- W2912404939 cites W2077469664 @default.
- W2912404939 cites W2080320419 @default.
- W2912404939 cites W2108607279 @default.
- W2912404939 cites W2110096996 @default.
- W2912404939 cites W2127895547 @default.
- W2912404939 cites W2140036815 @default.
- W2912404939 cites W2171279286 @default.
- W2912404939 cites W2246827810 @default.
- W2912404939 cites W2402457424 @default.
- W2912404939 cites W2512706923 @default.
- W2912404939 cites W3098931577 @default.
- W2912404939 cites W3122868618 @default.
- W2912404939 cites W4289751787 @default.
- W2912404939 doi "https://doi.org/10.1145/3308558.3313525" @default.
- W2912404939 hasPublicationYear "2019" @default.
- W2912404939 type Work @default.
- W2912404939 sameAs 2912404939 @default.
- W2912404939 citedByCount "17" @default.
- W2912404939 countsByYear W29124049392019 @default.
- W2912404939 countsByYear W29124049392020 @default.
- W2912404939 countsByYear W29124049392021 @default.
- W2912404939 countsByYear W29124049392022 @default.
- W2912404939 countsByYear W29124049392023 @default.
- W2912404939 crossrefType "proceedings-article" @default.
- W2912404939 hasAuthorship W2912404939A5025292786 @default.
- W2912404939 hasAuthorship W2912404939A5028225506 @default.
- W2912404939 hasAuthorship W2912404939A5030341301 @default.
- W2912404939 hasAuthorship W2912404939A5048237545 @default.
- W2912404939 hasAuthorship W2912404939A5049015446 @default.
- W2912404939 hasAuthorship W2912404939A5067731925 @default.
- W2912404939 hasAuthorship W2912404939A5082943001 @default.
- W2912404939 hasConcept C10138342 @default.
- W2912404939 hasConcept C119857082 @default.
- W2912404939 hasConcept C121332964 @default.
- W2912404939 hasConcept C124101348 @default.
- W2912404939 hasConcept C127413603 @default.
- W2912404939 hasConcept C13736549 @default.
- W2912404939 hasConcept C144133560 @default.
- W2912404939 hasConcept C154945302 @default.
- W2912404939 hasConcept C198082294 @default.
- W2912404939 hasConcept C199360897 @default.
- W2912404939 hasConcept C2522767166 @default.
- W2912404939 hasConcept C2524010 @default.
- W2912404939 hasConcept C2776214188 @default.
- W2912404939 hasConcept C2778755073 @default.
- W2912404939 hasConcept C2780801425 @default.
- W2912404939 hasConcept C33923547 @default.
- W2912404939 hasConcept C38349280 @default.
- W2912404939 hasConcept C41008148 @default.
- W2912404939 hasConcept C62520636 @default.
- W2912404939 hasConcept C75684735 @default.
- W2912404939 hasConceptScore W2912404939C10138342 @default.
- W2912404939 hasConceptScore W2912404939C119857082 @default.
- W2912404939 hasConceptScore W2912404939C121332964 @default.
- W2912404939 hasConceptScore W2912404939C124101348 @default.
- W2912404939 hasConceptScore W2912404939C127413603 @default.
- W2912404939 hasConceptScore W2912404939C13736549 @default.
- W2912404939 hasConceptScore W2912404939C144133560 @default.
- W2912404939 hasConceptScore W2912404939C154945302 @default.
- W2912404939 hasConceptScore W2912404939C198082294 @default.
- W2912404939 hasConceptScore W2912404939C199360897 @default.
- W2912404939 hasConceptScore W2912404939C2522767166 @default.
- W2912404939 hasConceptScore W2912404939C2524010 @default.
- W2912404939 hasConceptScore W2912404939C2776214188 @default.
- W2912404939 hasConceptScore W2912404939C2778755073 @default.
- W2912404939 hasConceptScore W2912404939C2780801425 @default.
- W2912404939 hasConceptScore W2912404939C33923547 @default.
- W2912404939 hasConceptScore W2912404939C38349280 @default.
- W2912404939 hasConceptScore W2912404939C41008148 @default.
- W2912404939 hasConceptScore W2912404939C62520636 @default.
- W2912404939 hasConceptScore W2912404939C75684735 @default.
- W2912404939 hasLocation W29124049391 @default.
- W2912404939 hasOpenAccess W2912404939 @default.
- W2912404939 hasPrimaryLocation W29124049391 @default.
- W2912404939 hasRelatedWork W1039292361 @default.
- W2912404939 hasRelatedWork W2397053934 @default.
- W2912404939 hasRelatedWork W2608950002 @default.