Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912423076> ?p ?o ?g. }
- W2912423076 endingPage "1981" @default.
- W2912423076 startingPage "1971" @default.
- W2912423076 abstract "Real images often have multiple labels, i.e., each image is associated with multiple objects or attributes. Compared to single-label image classification, the multilabel classification problem is much more challenging due to several issues. At first, multiple objects can be anywhere in the image. Second, the importance of different regions in an image is different, and the regions of interest in a multilabel image can be very different from another one. Finally, multiple labels of an image can have label dependencies due to complex image structures. To address these challenges, in this paper, we propose to predict the labels sequentially by applying the recurrent neural networks (RNNs), which are used to encode the label dependencies. When predicting a specific label, we introduce a dynamic attention mechanism to enable the model to focus on only regions of interest in the image. Two benchmark datasets (i.e., Pascal VOC and MS-COCO) are adopted to demonstrate the effectiveness of our work. Moreover, we construct a new dataset, which includes many semantic dependent labels in each image, to verify the effectiveness of our model. Experimental results show that our method outperforms several state-of-the-arts, especially when predicting some semantic relative labels." @default.
- W2912423076 created "2019-02-21" @default.
- W2912423076 creator A5023130798 @default.
- W2912423076 creator A5025695037 @default.
- W2912423076 creator A5032352025 @default.
- W2912423076 creator A5060958969 @default.
- W2912423076 creator A5086390256 @default.
- W2912423076 date "2019-08-01" @default.
- W2912423076 modified "2023-10-16" @default.
- W2912423076 title "Attend and Imagine: Multi-Label Image Classification With Visual Attention and Recurrent Neural Networks" @default.
- W2912423076 cites W1524416683 @default.
- W2912423076 cites W1606858007 @default.
- W2912423076 cites W1753402186 @default.
- W2912423076 cites W1861492603 @default.
- W2912423076 cites W1895577753 @default.
- W2912423076 cites W1900086069 @default.
- W2912423076 cites W1905051261 @default.
- W2912423076 cites W1953606363 @default.
- W2912423076 cites W1990702921 @default.
- W2912423076 cites W1991367009 @default.
- W2912423076 cites W1992851697 @default.
- W2912423076 cites W1999954155 @default.
- W2912423076 cites W2010181071 @default.
- W2912423076 cites W2031489346 @default.
- W2912423076 cites W2052684427 @default.
- W2912423076 cites W2062118960 @default.
- W2912423076 cites W2064675550 @default.
- W2912423076 cites W2066624635 @default.
- W2912423076 cites W2108598243 @default.
- W2912423076 cites W2114315281 @default.
- W2912423076 cites W2116750654 @default.
- W2912423076 cites W2138290126 @default.
- W2912423076 cites W2156935079 @default.
- W2912423076 cites W2157331557 @default.
- W2912423076 cites W2161381512 @default.
- W2912423076 cites W2166912588 @default.
- W2912423076 cites W2194775991 @default.
- W2912423076 cites W2302086703 @default.
- W2912423076 cites W2401353841 @default.
- W2912423076 cites W2534457893 @default.
- W2912423076 cites W2549365021 @default.
- W2912423076 cites W2560096627 @default.
- W2912423076 cites W2560920409 @default.
- W2912423076 cites W2577763257 @default.
- W2912423076 cites W2592165076 @default.
- W2912423076 cites W2618530766 @default.
- W2912423076 cites W2625940279 @default.
- W2912423076 cites W2799787995 @default.
- W2912423076 cites W2911189325 @default.
- W2912423076 cites W2963705779 @default.
- W2912423076 cites W2963745697 @default.
- W2912423076 cites W2963875806 @default.
- W2912423076 cites W4232706428 @default.
- W2912423076 doi "https://doi.org/10.1109/tmm.2019.2894964" @default.
- W2912423076 hasPublicationYear "2019" @default.
- W2912423076 type Work @default.
- W2912423076 sameAs 2912423076 @default.
- W2912423076 citedByCount "49" @default.
- W2912423076 countsByYear W29124230762019 @default.
- W2912423076 countsByYear W29124230762020 @default.
- W2912423076 countsByYear W29124230762021 @default.
- W2912423076 countsByYear W29124230762022 @default.
- W2912423076 countsByYear W29124230762023 @default.
- W2912423076 crossrefType "journal-article" @default.
- W2912423076 hasAuthorship W2912423076A5023130798 @default.
- W2912423076 hasAuthorship W2912423076A5025695037 @default.
- W2912423076 hasAuthorship W2912423076A5032352025 @default.
- W2912423076 hasAuthorship W2912423076A5060958969 @default.
- W2912423076 hasAuthorship W2912423076A5086390256 @default.
- W2912423076 hasConcept C104317684 @default.
- W2912423076 hasConcept C115961682 @default.
- W2912423076 hasConcept C119857082 @default.
- W2912423076 hasConcept C120665830 @default.
- W2912423076 hasConcept C121332964 @default.
- W2912423076 hasConcept C13280743 @default.
- W2912423076 hasConcept C153180895 @default.
- W2912423076 hasConcept C154945302 @default.
- W2912423076 hasConcept C185592680 @default.
- W2912423076 hasConcept C185798385 @default.
- W2912423076 hasConcept C192209626 @default.
- W2912423076 hasConcept C199360897 @default.
- W2912423076 hasConcept C205649164 @default.
- W2912423076 hasConcept C2776482837 @default.
- W2912423076 hasConcept C41008148 @default.
- W2912423076 hasConcept C50644808 @default.
- W2912423076 hasConcept C55493867 @default.
- W2912423076 hasConcept C66746571 @default.
- W2912423076 hasConcept C75294576 @default.
- W2912423076 hasConcept C75608658 @default.
- W2912423076 hasConceptScore W2912423076C104317684 @default.
- W2912423076 hasConceptScore W2912423076C115961682 @default.
- W2912423076 hasConceptScore W2912423076C119857082 @default.
- W2912423076 hasConceptScore W2912423076C120665830 @default.
- W2912423076 hasConceptScore W2912423076C121332964 @default.
- W2912423076 hasConceptScore W2912423076C13280743 @default.
- W2912423076 hasConceptScore W2912423076C153180895 @default.
- W2912423076 hasConceptScore W2912423076C154945302 @default.
- W2912423076 hasConceptScore W2912423076C185592680 @default.