Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912432815> ?p ?o ?g. }
- W2912432815 endingPage "200" @default.
- W2912432815 startingPage "200" @default.
- W2912432815 abstract "Magnetic nanoparticles are used to enhance the image contrast of magnetic resonance imaging (MRI). However, the development of magnetic nanoparticles with a low dose/high image contrast and non-toxicity is currently a major challenge. In this study, cobalt-substituted hydroxyapatite nanoparticles deposited on titanium (Ti-CoHA) and cobalt-substituted hydroxyapatite nanoparticles deposited on titanium dioxide nanotubes (TNT-CoHA) were synthesized by the electrochemical deposition method. The particle sizes of Ti-CoHA and TNT-CoHA were 418.6 nm and 127.5 nm, respectively, as observed using FE-SEM. It was shown that CoHA can be obtained with a smaller particle size using a titanium dioxide nanotube (TNT) electrode plate. However, the particle size of TNT-CoHA is smaller than that of Ti-CoHA. The crystal size of the internal cobalt oxide of CoHA was calculated by using an XRD pattern. The results indicate that the crystal size of cobalt oxide in TNT-CoHA is larger than that of the cobalt oxide in Ti-CoHA. The larger crystal size of the cobalt oxide in TNT-CoHA makes the saturation magnetization (Ms) of TNT-CoHA 12.6 times higher than that of Ti-CoHA. The contrast in MRIs is related to the magnetic properties of the particles. Therefore, TNT-CoHA has good image contrast at low concentrations in T2 images. The relaxivity coefficient of the CoHA was higher for TNT-CoHA (340.3 mM−1s−1) than Ti-CoHA (211.7 mM−1s−1), and both were higher than the commercial iron nanoparticles (103.0 mM−1s−1). We showed that the TNT substrate caused an increase in the size of the cobalt oxide crystal of TNT-CoHA, thus effectively improving the magnetic field strength and MRI image recognition. It was also shown that the relaxivity coefficient rose with the Ms. Evaluation of biocompatibility of CoHA using human osteosarcoma cells (MG63) indicated no toxic effects. On the other hand, CoHA had an excellent antibacterial effect, as shown by E. coli evaluation, and the effect of TNT-CoHA powder was higher than that of Ti-CoHA powder. In summary, TNT-CoHA deposited electrochemically on the TNT substrates can be considered as a potential candidate for the application as an MRI contrast agent. This paper is a comparative study of how different electrode plates affect the magnetic and MRI image contrast of cobalt-substituted hydroxyapatite (CoHA) nanomaterials." @default.
- W2912432815 created "2019-02-21" @default.
- W2912432815 creator A5004120286 @default.
- W2912432815 creator A5032571858 @default.
- W2912432815 creator A5032727154 @default.
- W2912432815 creator A5037979055 @default.
- W2912432815 creator A5081782202 @default.
- W2912432815 date "2019-02-03" @default.
- W2912432815 modified "2023-10-16" @default.
- W2912432815 title "The Effect of Electrode Topography on the Magnetic Properties and MRI Application of Electrochemically-Deposited, Synthesized, Cobalt-Substituted Hydroxyapatite" @default.
- W2912432815 cites W1761289231 @default.
- W2912432815 cites W1974981354 @default.
- W2912432815 cites W1976914785 @default.
- W2912432815 cites W1976949057 @default.
- W2912432815 cites W1977587263 @default.
- W2912432815 cites W1979347411 @default.
- W2912432815 cites W1980516201 @default.
- W2912432815 cites W1983778032 @default.
- W2912432815 cites W1991495990 @default.
- W2912432815 cites W2001201867 @default.
- W2912432815 cites W2006141364 @default.
- W2912432815 cites W2009283061 @default.
- W2912432815 cites W2020214628 @default.
- W2912432815 cites W2020269528 @default.
- W2912432815 cites W2024729132 @default.
- W2912432815 cites W2032923564 @default.
- W2912432815 cites W2033639000 @default.
- W2912432815 cites W2061443558 @default.
- W2912432815 cites W2061690699 @default.
- W2912432815 cites W2064734923 @default.
- W2912432815 cites W2069746446 @default.
- W2912432815 cites W2084081008 @default.
- W2912432815 cites W2090748925 @default.
- W2912432815 cites W2091570843 @default.
- W2912432815 cites W2103162623 @default.
- W2912432815 cites W2107084664 @default.
- W2912432815 cites W2122797871 @default.
- W2912432815 cites W2127279078 @default.
- W2912432815 cites W2146482929 @default.
- W2912432815 cites W2150287384 @default.
- W2912432815 cites W2170556716 @default.
- W2912432815 cites W2190789057 @default.
- W2912432815 cites W2321810865 @default.
- W2912432815 cites W2461225231 @default.
- W2912432815 cites W2499222963 @default.
- W2912432815 cites W2547324689 @default.
- W2912432815 cites W2580804331 @default.
- W2912432815 cites W2585122665 @default.
- W2912432815 cites W2789350179 @default.
- W2912432815 cites W2801217616 @default.
- W2912432815 cites W2809364960 @default.
- W2912432815 cites W2907803817 @default.
- W2912432815 cites W4235365114 @default.
- W2912432815 cites W935486156 @default.
- W2912432815 doi "https://doi.org/10.3390/nano9020200" @default.
- W2912432815 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6409796" @default.
- W2912432815 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30717496" @default.
- W2912432815 hasPublicationYear "2019" @default.
- W2912432815 type Work @default.
- W2912432815 sameAs 2912432815 @default.
- W2912432815 citedByCount "10" @default.
- W2912432815 countsByYear W29124328152020 @default.
- W2912432815 countsByYear W29124328152021 @default.
- W2912432815 countsByYear W29124328152022 @default.
- W2912432815 countsByYear W29124328152023 @default.
- W2912432815 crossrefType "journal-article" @default.
- W2912432815 hasAuthorship W2912432815A5004120286 @default.
- W2912432815 hasAuthorship W2912432815A5032571858 @default.
- W2912432815 hasAuthorship W2912432815A5032727154 @default.
- W2912432815 hasAuthorship W2912432815A5037979055 @default.
- W2912432815 hasAuthorship W2912432815A5081782202 @default.
- W2912432815 hasBestOaLocation W29124328151 @default.
- W2912432815 hasConcept C155672457 @default.
- W2912432815 hasConcept C159985019 @default.
- W2912432815 hasConcept C171250308 @default.
- W2912432815 hasConcept C191897082 @default.
- W2912432815 hasConcept C192562407 @default.
- W2912432815 hasConcept C2777593239 @default.
- W2912432815 hasConcept C506065880 @default.
- W2912432815 hasConcept C515602321 @default.
- W2912432815 hasConceptScore W2912432815C155672457 @default.
- W2912432815 hasConceptScore W2912432815C159985019 @default.
- W2912432815 hasConceptScore W2912432815C171250308 @default.
- W2912432815 hasConceptScore W2912432815C191897082 @default.
- W2912432815 hasConceptScore W2912432815C192562407 @default.
- W2912432815 hasConceptScore W2912432815C2777593239 @default.
- W2912432815 hasConceptScore W2912432815C506065880 @default.
- W2912432815 hasConceptScore W2912432815C515602321 @default.
- W2912432815 hasFunder F4320322795 @default.
- W2912432815 hasIssue "2" @default.
- W2912432815 hasLocation W29124328151 @default.
- W2912432815 hasLocation W29124328152 @default.
- W2912432815 hasLocation W29124328153 @default.
- W2912432815 hasLocation W29124328154 @default.
- W2912432815 hasOpenAccess W2912432815 @default.
- W2912432815 hasPrimaryLocation W29124328151 @default.
- W2912432815 hasRelatedWork W1559392985 @default.
- W2912432815 hasRelatedWork W1972902579 @default.