Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912449166> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2912449166 abstract "Cyber-physical systems (CPS) tightly integrate physical and computing processes by monitoring and control data interacting between them via underlying networks. Software Defined Network (SDN) Technology has increasingly become essential in many advanced computer networks, including those in modern CPS, to provide flexible and agile network development. Despite many benefits that SDN offers, malicious attacks that can eventually prevent network services are unavoidable. Among the most predominant attacks on SDN controller layer, Link Discovery Attack and ARP (Address Resolution Protocol) Spoofing Attack are fundamental in that they are the gateways of many other SDN threats and attacks. To defend these attacks, most existing techniques either rely on relatively complex data validation techniques or use thresholds that can be subjective and unable to detect more than one type of attacks at a time if one deciding factor is used. While Big data technology, particularly machine learning, has been widely used for intrusion/anomaly detection, little has been done in SDN. This paper explores how well this technology can be used to predict these SDN attacks. By employing typical machine learning algorithms on simulated data of routing in SDN when attacks occur, preliminary results, obtained from four machine learning models, show the average area under ROC curve of over 96% and 92% for sample size 50,970 (12 switches) and 60,000 (20 switches), respectively. Further experiments show near-linear scaling in training time for the best performing algorithm when sample size grows up to 100,000." @default.
- W2912449166 created "2019-02-21" @default.
- W2912449166 creator A5053622441 @default.
- W2912449166 creator A5057522209 @default.
- W2912449166 creator A5082111281 @default.
- W2912449166 date "2018-12-01" @default.
- W2912449166 modified "2023-09-27" @default.
- W2912449166 title "Towards Prediction of Security Attacks on Software Defined Networks: A Big Data Analytic Approach" @default.
- W2912449166 cites W1531996150 @default.
- W2912449166 cites W1984451560 @default.
- W2912449166 cites W1988774297 @default.
- W2912449166 cites W2037998200 @default.
- W2912449166 cites W2040340473 @default.
- W2912449166 cites W2068847354 @default.
- W2912449166 cites W2112700013 @default.
- W2912449166 cites W2150093579 @default.
- W2912449166 cites W2206730006 @default.
- W2912449166 cites W2218937857 @default.
- W2912449166 cites W2495947746 @default.
- W2912449166 cites W2557772052 @default.
- W2912449166 cites W2566977993 @default.
- W2912449166 cites W2754506751 @default.
- W2912449166 cites W2758823692 @default.
- W2912449166 doi "https://doi.org/10.1109/bigdata.2018.8622524" @default.
- W2912449166 hasPublicationYear "2018" @default.
- W2912449166 type Work @default.
- W2912449166 sameAs 2912449166 @default.
- W2912449166 citedByCount "7" @default.
- W2912449166 countsByYear W29124491662019 @default.
- W2912449166 countsByYear W29124491662020 @default.
- W2912449166 countsByYear W29124491662021 @default.
- W2912449166 countsByYear W29124491662022 @default.
- W2912449166 crossrefType "proceedings-article" @default.
- W2912449166 hasAuthorship W2912449166A5053622441 @default.
- W2912449166 hasAuthorship W2912449166A5057522209 @default.
- W2912449166 hasAuthorship W2912449166A5082111281 @default.
- W2912449166 hasBestOaLocation W29124491662 @default.
- W2912449166 hasConcept C124101348 @default.
- W2912449166 hasConcept C199360897 @default.
- W2912449166 hasConcept C2522767166 @default.
- W2912449166 hasConcept C2777904410 @default.
- W2912449166 hasConcept C29983905 @default.
- W2912449166 hasConcept C38652104 @default.
- W2912449166 hasConcept C41008148 @default.
- W2912449166 hasConcept C527648132 @default.
- W2912449166 hasConcept C62913178 @default.
- W2912449166 hasConcept C75684735 @default.
- W2912449166 hasConceptScore W2912449166C124101348 @default.
- W2912449166 hasConceptScore W2912449166C199360897 @default.
- W2912449166 hasConceptScore W2912449166C2522767166 @default.
- W2912449166 hasConceptScore W2912449166C2777904410 @default.
- W2912449166 hasConceptScore W2912449166C29983905 @default.
- W2912449166 hasConceptScore W2912449166C38652104 @default.
- W2912449166 hasConceptScore W2912449166C41008148 @default.
- W2912449166 hasConceptScore W2912449166C527648132 @default.
- W2912449166 hasConceptScore W2912449166C62913178 @default.
- W2912449166 hasConceptScore W2912449166C75684735 @default.
- W2912449166 hasLocation W29124491661 @default.
- W2912449166 hasLocation W29124491662 @default.
- W2912449166 hasOpenAccess W2912449166 @default.
- W2912449166 hasPrimaryLocation W29124491661 @default.
- W2912449166 hasRelatedWork W1039292361 @default.
- W2912449166 hasRelatedWork W1488863130 @default.
- W2912449166 hasRelatedWork W2155206946 @default.
- W2912449166 hasRelatedWork W2397053934 @default.
- W2912449166 hasRelatedWork W2617449561 @default.
- W2912449166 hasRelatedWork W2767632110 @default.
- W2912449166 hasRelatedWork W2808989540 @default.
- W2912449166 hasRelatedWork W3007967230 @default.
- W2912449166 hasRelatedWork W3023846186 @default.
- W2912449166 hasRelatedWork W4322629366 @default.
- W2912449166 isParatext "false" @default.
- W2912449166 isRetracted "false" @default.
- W2912449166 magId "2912449166" @default.
- W2912449166 workType "article" @default.