Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912459103> ?p ?o ?g. }
- W2912459103 endingPage "595" @default.
- W2912459103 startingPage "585" @default.
- W2912459103 abstract "Artificial metalloenzymes (ArMs) result from anchoring a metal-containing moiety within a macromolecular scaffold (protein or oligonucleotide). The resulting hybrid catalyst combines attractive features of both homogeneous catalysts and enzymes. This strategy includes the possibility of optimizing the reaction by both chemical (catalyst design) and genetic means leading to achievement of a novel degree of (enantio)selectivity, broadening of the substrate scope, or increased activity, among others. In the past 20 years, the Ward group has exploited, among others, the biotin-(strept)avidin technology to localize a catalytic moiety within a well-defined protein environment. Streptavidin has proven versatile for the implementation of ArMs as it offers the following features: (i) it is an extremely robust protein scaffold, amenable to extensive genetic manipulation and mishandling, (ii) it can be expressed in E. coli to very high titers (up to >8 g·L-1 in fed-batch cultures), and (iii) the cavity surrounding the biotinylated cofactor is commensurate with the size of a typical metal-catalyzed transition state. Relying on a chemogenetic optimization strategy, varying the orientation and the nature of the biotinylated cofactor within genetically engineered streptavidin, 12 reactions have been reported by the Ward group thus far. Recent efforts within our group have focused on extending the ArM technology to create complex systems for integration into biological cascade reactions and in vivo. With the long-term goal of complementing in vivo natural enzymes with ArMs, we summarize herein three complementary research lines: (i) With the aim of mimicking complex cross-regulation mechanisms prevalent in metabolism, we have engineered enzyme cascades, including cross-regulated reactions, that rely on ArMs. These efforts highlight the remarkable (bio)compatibility and complementarity of ArMs with natural enzymes. (ii) Additionally, multiple-turnover catalysis in the cytoplasm of aerobic organisms was achieved with ArMs that are compatible with a glutathione-rich environment. This feat is demonstrated in HEK-293T cells that are engineered with a gene switch that is upregulated by an ArM equipped with a cell-penetrating module. (iii) Finally, ArMs offer the fascinating prospect of endowing organometallic chemistry with a genetic memory. With this goal in mind, we have identified E. coli's periplasmic space and surface display to compartmentalize an ArM, while maintaining the critical phenotype-genotype linkage. This strategy offers a straightforward means to optimize by directed evolution the catalytic performance of ArMs. Five reactions have been optimized following these compartmentalization strategies: ruthenium-catalyzed olefin metathesis, ruthenium-catalyzed deallylation, iridium-catalyzed transfer hydrogenation, dirhodium-catalyzed cyclopropanation and carbene insertion in C-H bonds. Importantly, >100 turnovers were achieved with ArMs in E. coli whole cells, highlighting the multiple turnover catalytic nature of these systems." @default.
- W2912459103 created "2019-02-21" @default.
- W2912459103 creator A5011635908 @default.
- W2912459103 creator A5057806953 @default.
- W2912459103 creator A5069094798 @default.
- W2912459103 creator A5070946078 @default.
- W2912459103 date "2019-02-08" @default.
- W2912459103 modified "2023-10-16" @default.
- W2912459103 title "Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology: Enzymatic Cascades and Directed Evolution" @default.
- W2912459103 cites W1964413981 @default.
- W2912459103 cites W2005211587 @default.
- W2912459103 cites W2005733654 @default.
- W2912459103 cites W2005871028 @default.
- W2912459103 cites W2008218229 @default.
- W2912459103 cites W2022811030 @default.
- W2912459103 cites W2032479422 @default.
- W2912459103 cites W2063597962 @default.
- W2912459103 cites W2083146987 @default.
- W2912459103 cites W2083663368 @default.
- W2912459103 cites W2085277655 @default.
- W2912459103 cites W2087370580 @default.
- W2912459103 cites W2095663115 @default.
- W2912459103 cites W2104115709 @default.
- W2912459103 cites W2156533755 @default.
- W2912459103 cites W2158356444 @default.
- W2912459103 cites W2312846864 @default.
- W2912459103 cites W2317986390 @default.
- W2912459103 cites W2322790863 @default.
- W2912459103 cites W2327350284 @default.
- W2912459103 cites W2340795529 @default.
- W2912459103 cites W2342711514 @default.
- W2912459103 cites W2417290635 @default.
- W2912459103 cites W2431104752 @default.
- W2912459103 cites W2482495999 @default.
- W2912459103 cites W2507192932 @default.
- W2912459103 cites W2512034756 @default.
- W2912459103 cites W2513089562 @default.
- W2912459103 cites W2514385170 @default.
- W2912459103 cites W2538174708 @default.
- W2912459103 cites W2607455836 @default.
- W2912459103 cites W2613083880 @default.
- W2912459103 cites W2613889112 @default.
- W2912459103 cites W2735839143 @default.
- W2912459103 cites W2760540231 @default.
- W2912459103 cites W2779551360 @default.
- W2912459103 cites W2781816855 @default.
- W2912459103 cites W2782246467 @default.
- W2912459103 cites W2784547996 @default.
- W2912459103 cites W2801159320 @default.
- W2912459103 cites W2803476351 @default.
- W2912459103 cites W2803730805 @default.
- W2912459103 cites W2804205785 @default.
- W2912459103 cites W2880479471 @default.
- W2912459103 cites W2889010642 @default.
- W2912459103 cites W2895424258 @default.
- W2912459103 doi "https://doi.org/10.1021/acs.accounts.8b00618" @default.
- W2912459103 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6427477" @default.
- W2912459103 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30735358" @default.
- W2912459103 hasPublicationYear "2019" @default.
- W2912459103 type Work @default.
- W2912459103 sameAs 2912459103 @default.
- W2912459103 citedByCount "108" @default.
- W2912459103 countsByYear W29124591032019 @default.
- W2912459103 countsByYear W29124591032020 @default.
- W2912459103 countsByYear W29124591032021 @default.
- W2912459103 countsByYear W29124591032022 @default.
- W2912459103 countsByYear W29124591032023 @default.
- W2912459103 crossrefType "journal-article" @default.
- W2912459103 hasAuthorship W2912459103A5011635908 @default.
- W2912459103 hasAuthorship W2912459103A5057806953 @default.
- W2912459103 hasAuthorship W2912459103A5069094798 @default.
- W2912459103 hasAuthorship W2912459103A5070946078 @default.
- W2912459103 hasBestOaLocation W29124591031 @default.
- W2912459103 hasConcept C129312508 @default.
- W2912459103 hasConcept C161790260 @default.
- W2912459103 hasConcept C171250308 @default.
- W2912459103 hasConcept C176406525 @default.
- W2912459103 hasConcept C181199279 @default.
- W2912459103 hasConcept C185592680 @default.
- W2912459103 hasConcept C18903297 @default.
- W2912459103 hasConcept C191908910 @default.
- W2912459103 hasConcept C192562407 @default.
- W2912459103 hasConcept C197957613 @default.
- W2912459103 hasConcept C204628709 @default.
- W2912459103 hasConcept C21951064 @default.
- W2912459103 hasConcept C2776190903 @default.
- W2912459103 hasConcept C2776568683 @default.
- W2912459103 hasConcept C2777289219 @default.
- W2912459103 hasConcept C2778204606 @default.
- W2912459103 hasConcept C552990157 @default.
- W2912459103 hasConcept C55493867 @default.
- W2912459103 hasConcept C70721500 @default.
- W2912459103 hasConcept C71240020 @default.
- W2912459103 hasConcept C86803240 @default.
- W2912459103 hasConceptScore W2912459103C129312508 @default.
- W2912459103 hasConceptScore W2912459103C161790260 @default.
- W2912459103 hasConceptScore W2912459103C171250308 @default.
- W2912459103 hasConceptScore W2912459103C176406525 @default.