Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912462370> ?p ?o ?g. }
- W2912462370 endingPage "28" @default.
- W2912462370 startingPage "12" @default.
- W2912462370 abstract "Travel time on a route varies substantially by time of day and from day to day. It is critical to understand to what extent this variation is correlated with various factors, such as weather, incidents, events or travel demand level in the context of dynamic networks. This helps a better decision making for infrastructure planning and real-time traffic operation. We propose a data-driven approach to understand and predict highway travel time using spatio-temporal features of those factors, all of which are acquired from multiple data sources. The prediction model holistically selects the most related features from a highdimensional feature space by correlation analysis, principle component analysis and LASSO. We test and compare the performance of several regression models in predicting travel time 30 min in advance via two case studies: (1) a 6-mile highway corridor of I-270N in D.C. region, and (2) a 2.3-mile corridor of I-376E in Pittsburgh region. We found that some bottlenecks scattered in the network can imply congestion on those corridors at least 30 minutes in advance, including those on the alternative route to the corridors of study. In addition, real-time travel time is statistically related to incidents on some specific locations, morning/afternoon travel demand, visibility, precipitation, wind speed/gust and the weather type. All those spatiotemporal information together help improve prediction accuracy, comparing to using only speed data. In both case studies, random forest shows the most promise, reaching a root-mean-squared error of 16.6% and 17.0% respectively in afternoon peak hours for the entire year of 2014." @default.
- W2912462370 created "2019-02-21" @default.
- W2912462370 creator A5034516984 @default.
- W2912462370 creator A5082123014 @default.
- W2912462370 date "2019-01-01" @default.
- W2912462370 modified "2023-09-29" @default.
- W2912462370 title "Understanding and Predicting Travel Time with Spatio-Temporal Features of Network Traffic Flow, Weather and Incidents" @default.
- W2912462370 cites W1974539152 @default.
- W2912462370 cites W1976495514 @default.
- W2912462370 cites W1984328578 @default.
- W2912462370 cites W1991694886 @default.
- W2912462370 cites W1991770012 @default.
- W2912462370 cites W1996851706 @default.
- W2912462370 cites W2002033255 @default.
- W2912462370 cites W2003359455 @default.
- W2912462370 cites W2019836907 @default.
- W2912462370 cites W2024558842 @default.
- W2912462370 cites W2027392238 @default.
- W2912462370 cites W2028336648 @default.
- W2912462370 cites W2042859557 @default.
- W2912462370 cites W2049952439 @default.
- W2912462370 cites W2062017159 @default.
- W2912462370 cites W2069929199 @default.
- W2912462370 cites W2076902400 @default.
- W2912462370 cites W2094350745 @default.
- W2912462370 cites W2115868680 @default.
- W2912462370 cites W2117284672 @default.
- W2912462370 cites W2128728535 @default.
- W2912462370 cites W2130306081 @default.
- W2912462370 cites W2150010190 @default.
- W2912462370 cites W2152196380 @default.
- W2912462370 cites W2164842457 @default.
- W2912462370 cites W2166662814 @default.
- W2912462370 cites W2171234954 @default.
- W2912462370 cites W2190353863 @default.
- W2912462370 cites W2281972242 @default.
- W2912462370 cites W2463743813 @default.
- W2912462370 cites W2587736284 @default.
- W2912462370 cites W3122912982 @default.
- W2912462370 cites W4248383622 @default.
- W2912462370 cites W4251529734 @default.
- W2912462370 doi "https://doi.org/10.1109/mits.2019.2919615" @default.
- W2912462370 hasPublicationYear "2019" @default.
- W2912462370 type Work @default.
- W2912462370 sameAs 2912462370 @default.
- W2912462370 citedByCount "34" @default.
- W2912462370 countsByYear W29124623702019 @default.
- W2912462370 countsByYear W29124623702020 @default.
- W2912462370 countsByYear W29124623702021 @default.
- W2912462370 countsByYear W29124623702022 @default.
- W2912462370 countsByYear W29124623702023 @default.
- W2912462370 crossrefType "journal-article" @default.
- W2912462370 hasAuthorship W2912462370A5034516984 @default.
- W2912462370 hasAuthorship W2912462370A5082123014 @default.
- W2912462370 hasBestOaLocation W29124623702 @default.
- W2912462370 hasConcept C105795698 @default.
- W2912462370 hasConcept C119857082 @default.
- W2912462370 hasConcept C123403432 @default.
- W2912462370 hasConcept C127413603 @default.
- W2912462370 hasConcept C153294291 @default.
- W2912462370 hasConcept C161067210 @default.
- W2912462370 hasConcept C166957645 @default.
- W2912462370 hasConcept C169258074 @default.
- W2912462370 hasConcept C185429906 @default.
- W2912462370 hasConcept C185798385 @default.
- W2912462370 hasConcept C205649164 @default.
- W2912462370 hasConcept C207512268 @default.
- W2912462370 hasConcept C22212356 @default.
- W2912462370 hasConcept C2779343474 @default.
- W2912462370 hasConcept C33923547 @default.
- W2912462370 hasConcept C38652104 @default.
- W2912462370 hasConcept C41008148 @default.
- W2912462370 hasConcept C58640448 @default.
- W2912462370 hasConceptScore W2912462370C105795698 @default.
- W2912462370 hasConceptScore W2912462370C119857082 @default.
- W2912462370 hasConceptScore W2912462370C123403432 @default.
- W2912462370 hasConceptScore W2912462370C127413603 @default.
- W2912462370 hasConceptScore W2912462370C153294291 @default.
- W2912462370 hasConceptScore W2912462370C161067210 @default.
- W2912462370 hasConceptScore W2912462370C166957645 @default.
- W2912462370 hasConceptScore W2912462370C169258074 @default.
- W2912462370 hasConceptScore W2912462370C185429906 @default.
- W2912462370 hasConceptScore W2912462370C185798385 @default.
- W2912462370 hasConceptScore W2912462370C205649164 @default.
- W2912462370 hasConceptScore W2912462370C207512268 @default.
- W2912462370 hasConceptScore W2912462370C22212356 @default.
- W2912462370 hasConceptScore W2912462370C2779343474 @default.
- W2912462370 hasConceptScore W2912462370C33923547 @default.
- W2912462370 hasConceptScore W2912462370C38652104 @default.
- W2912462370 hasConceptScore W2912462370C41008148 @default.
- W2912462370 hasConceptScore W2912462370C58640448 @default.
- W2912462370 hasIssue "3" @default.
- W2912462370 hasLocation W29124623701 @default.
- W2912462370 hasLocation W29124623702 @default.
- W2912462370 hasLocation W29124623703 @default.
- W2912462370 hasOpenAccess W2912462370 @default.
- W2912462370 hasPrimaryLocation W29124623701 @default.
- W2912462370 hasRelatedWork W112744582 @default.