Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912462572> ?p ?o ?g. }
- W2912462572 endingPage "815" @default.
- W2912462572 startingPage "802" @default.
- W2912462572 abstract "Vegetation growth in Soil and Water Assessment Tool (SWAT) is a crucial process for quantifying ecohydrological modelling, as it influences evapotranspiration, interception, soil erosion and biomass production. The simplified version of Environmental Policy Integrated Climate (EPIC) in SWAT was originally designed for temperate regions and naturally based on temperature to simulate growth cycles of vegetation. However, tropical or subtropical vegetation growth is mainly controlled by rainfall. Due to this limitation, current SWAT simulations in tropics and subtropics have been facing a series of problems on vegetation dormancy, water balance and sediment yield. Therefore, we proposed an approach to enhance the modelling of SWAT vegetation dynamics with remotely sensed leaf area index (LAI), to finally increase the applicability of SWAT in tropical or subtropical areas. Spatially and temporally continuous LAI products (1 day, 500 m) from Moderate Resolution Imaging Spectroradiometer (MODIS) observations were integrated into SWAT to replace the LAI simulated by built-in EPIC module. Two advanced filter algorithms were employed to derive a downscaled LAI (30 m) to keep a consistent spatial scale with the size of Hydrological Response Units (HRU) and open data (i.e. SRTM, 30 m), and the source code of the plant growth module were correspondingly modified to incorporate the downscaled LAI into SWAT. To examine the performance of our proposed approach, a case study was conducted in a representative middle-scale (6384 km2) subtropical watershed of Meichuan basin, China, and detailed analysis was performed to investigate its ecohydrological effects, such as streamflow, sediment yield and LAI dynamics from 2001 to 2014. Model performances were compared among three scenarios: (1) original SWAT, (2) SWAT with a corrected plant dormancy function, and (3) modified SWAT after integration of MODIS LAI (our proposed method). Results showed that the modified SWAT took advantage of downscaled MODIS LAI and produced more reasonable seasonal curves of vegetation cover factor (C) of plants than the original model. Correspondingly, the modified SWAT substantially improved streamflow and sediment simulations. The findings demonstrated that SWAT model can be a useful tool for simulating ecohydrological process for subtropical ecosystems when integrated with our proposed method." @default.
- W2912462572 created "2019-02-21" @default.
- W2912462572 creator A5001500717 @default.
- W2912462572 creator A5007558771 @default.
- W2912462572 creator A5030808997 @default.
- W2912462572 creator A5041873456 @default.
- W2912462572 date "2019-03-01" @default.
- W2912462572 modified "2023-10-15" @default.
- W2912462572 title "Enhancing SWAT with remotely sensed LAI for improved modelling of ecohydrological process in subtropics" @default.
- W2912462572 cites W1164598685 @default.
- W2912462572 cites W1564464817 @default.
- W2912462572 cites W1978807511 @default.
- W2912462572 cites W1983724666 @default.
- W2912462572 cites W1983860987 @default.
- W2912462572 cites W1987927366 @default.
- W2912462572 cites W2001510610 @default.
- W2912462572 cites W2005650218 @default.
- W2912462572 cites W2014501722 @default.
- W2912462572 cites W2018636632 @default.
- W2912462572 cites W2019022785 @default.
- W2912462572 cites W2026746610 @default.
- W2912462572 cites W2028021943 @default.
- W2912462572 cites W2029311541 @default.
- W2912462572 cites W2033904036 @default.
- W2912462572 cites W2034822429 @default.
- W2912462572 cites W2035388338 @default.
- W2912462572 cites W2037364101 @default.
- W2912462572 cites W2037511922 @default.
- W2912462572 cites W2042145752 @default.
- W2912462572 cites W2042904956 @default.
- W2912462572 cites W2045548195 @default.
- W2912462572 cites W2047353519 @default.
- W2912462572 cites W2048040783 @default.
- W2912462572 cites W2049363103 @default.
- W2912462572 cites W2057972384 @default.
- W2912462572 cites W2058214432 @default.
- W2912462572 cites W2058998445 @default.
- W2912462572 cites W2059646894 @default.
- W2912462572 cites W2060317936 @default.
- W2912462572 cites W2068742635 @default.
- W2912462572 cites W2080378488 @default.
- W2912462572 cites W2088603520 @default.
- W2912462572 cites W2089914147 @default.
- W2912462572 cites W2090915513 @default.
- W2912462572 cites W2097931714 @default.
- W2912462572 cites W2108262690 @default.
- W2912462572 cites W2108704675 @default.
- W2912462572 cites W2119917753 @default.
- W2912462572 cites W2128003492 @default.
- W2912462572 cites W2128378563 @default.
- W2912462572 cites W2137517441 @default.
- W2912462572 cites W2138822692 @default.
- W2912462572 cites W2150545406 @default.
- W2912462572 cites W2156573762 @default.
- W2912462572 cites W2157939402 @default.
- W2912462572 cites W2210359000 @default.
- W2912462572 cites W2217449633 @default.
- W2912462572 cites W2252197927 @default.
- W2912462572 cites W2297847722 @default.
- W2912462572 cites W2540745662 @default.
- W2912462572 cites W2590655308 @default.
- W2912462572 cites W2618556347 @default.
- W2912462572 cites W2775501095 @default.
- W2912462572 cites W2779332772 @default.
- W2912462572 cites W2791988544 @default.
- W2912462572 cites W2804279190 @default.
- W2912462572 cites W2810643618 @default.
- W2912462572 cites W2903017376 @default.
- W2912462572 cites W2906003851 @default.
- W2912462572 doi "https://doi.org/10.1016/j.jhydrol.2019.01.024" @default.
- W2912462572 hasPublicationYear "2019" @default.
- W2912462572 type Work @default.
- W2912462572 sameAs 2912462572 @default.
- W2912462572 citedByCount "50" @default.
- W2912462572 countsByYear W29124625722019 @default.
- W2912462572 countsByYear W29124625722020 @default.
- W2912462572 countsByYear W29124625722021 @default.
- W2912462572 countsByYear W29124625722022 @default.
- W2912462572 countsByYear W29124625722023 @default.
- W2912462572 crossrefType "journal-article" @default.
- W2912462572 hasAuthorship W2912462572A5001500717 @default.
- W2912462572 hasAuthorship W2912462572A5007558771 @default.
- W2912462572 hasAuthorship W2912462572A5030808997 @default.
- W2912462572 hasAuthorship W2912462572A5041873456 @default.
- W2912462572 hasBestOaLocation W29124625722 @default.
- W2912462572 hasConcept C111368507 @default.
- W2912462572 hasConcept C119857082 @default.
- W2912462572 hasConcept C126645576 @default.
- W2912462572 hasConcept C127313418 @default.
- W2912462572 hasConcept C132651083 @default.
- W2912462572 hasConcept C14168384 @default.
- W2912462572 hasConcept C142724271 @default.
- W2912462572 hasConcept C150547873 @default.
- W2912462572 hasConcept C176783924 @default.
- W2912462572 hasConcept C187320778 @default.
- W2912462572 hasConcept C18903297 @default.
- W2912462572 hasConcept C205649164 @default.
- W2912462572 hasConcept C25989453 @default.