Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912475127> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2912475127 abstract "Reliable and economical inspection of rail tracks is paramount to ensure the safe and timely operation of the railway network. Automated vision based track inspection utilizing computer vision and pattern recognition techniques have been regarded recently as the most attractive technique for track surface defect detection due to its low-cost, high-speed, and appealing performance. However, the different modes of failures along with the immense range of image variations that can potentially trigger false alarms makes the vision based track inspection a very challenging task. In this paper, a multiphase deep learning based technique which initially performs segmentation, followed by cropping of the segmented image on the region of interest which is then fed to a binary image classifier to identify the true and false alarms is proposed. It is shown that the proposed approach results in improved detection performance by mitigating the false alarm rate." @default.
- W2912475127 created "2019-02-21" @default.
- W2912475127 creator A5009735203 @default.
- W2912475127 creator A5010092389 @default.
- W2912475127 creator A5029757365 @default.
- W2912475127 creator A5041108474 @default.
- W2912475127 creator A5043685749 @default.
- W2912475127 creator A5054770718 @default.
- W2912475127 creator A5064873292 @default.
- W2912475127 creator A5068391079 @default.
- W2912475127 creator A5074776524 @default.
- W2912475127 date "2018-12-01" @default.
- W2912475127 modified "2023-09-26" @default.
- W2912475127 title "TrackNet - A Deep Learning Based Fault Detection for Railway Track Inspection" @default.
- W2912475127 cites W1965254972 @default.
- W2912475127 cites W1981759979 @default.
- W2912475127 cites W2009125863 @default.
- W2912475127 cites W2011204807 @default.
- W2912475127 cites W2029670657 @default.
- W2912475127 cites W2050774995 @default.
- W2912475127 cites W2088600512 @default.
- W2912475127 cites W2106474383 @default.
- W2912475127 cites W2112438422 @default.
- W2912475127 cites W2117539524 @default.
- W2912475127 cites W2143628014 @default.
- W2912475127 cites W2194775991 @default.
- W2912475127 cites W2295612077 @default.
- W2912475127 cites W234388709 @default.
- W2912475127 cites W2406523001 @default.
- W2912475127 cites W2555875178 @default.
- W2912475127 cites W2963446712 @default.
- W2912475127 cites W4232678018 @default.
- W2912475127 doi "https://doi.org/10.1109/icirt.2018.8641608" @default.
- W2912475127 hasPublicationYear "2018" @default.
- W2912475127 type Work @default.
- W2912475127 sameAs 2912475127 @default.
- W2912475127 citedByCount "19" @default.
- W2912475127 countsByYear W29124751272019 @default.
- W2912475127 countsByYear W29124751272020 @default.
- W2912475127 countsByYear W29124751272021 @default.
- W2912475127 countsByYear W29124751272022 @default.
- W2912475127 countsByYear W29124751272023 @default.
- W2912475127 crossrefType "proceedings-article" @default.
- W2912475127 hasAuthorship W2912475127A5009735203 @default.
- W2912475127 hasAuthorship W2912475127A5010092389 @default.
- W2912475127 hasAuthorship W2912475127A5029757365 @default.
- W2912475127 hasAuthorship W2912475127A5041108474 @default.
- W2912475127 hasAuthorship W2912475127A5043685749 @default.
- W2912475127 hasAuthorship W2912475127A5054770718 @default.
- W2912475127 hasAuthorship W2912475127A5064873292 @default.
- W2912475127 hasAuthorship W2912475127A5068391079 @default.
- W2912475127 hasAuthorship W2912475127A5074776524 @default.
- W2912475127 hasConcept C108583219 @default.
- W2912475127 hasConcept C111919701 @default.
- W2912475127 hasConcept C127313418 @default.
- W2912475127 hasConcept C152745839 @default.
- W2912475127 hasConcept C153180895 @default.
- W2912475127 hasConcept C154945302 @default.
- W2912475127 hasConcept C165205528 @default.
- W2912475127 hasConcept C172707124 @default.
- W2912475127 hasConcept C175551986 @default.
- W2912475127 hasConcept C31972630 @default.
- W2912475127 hasConcept C41008148 @default.
- W2912475127 hasConcept C89992363 @default.
- W2912475127 hasConceptScore W2912475127C108583219 @default.
- W2912475127 hasConceptScore W2912475127C111919701 @default.
- W2912475127 hasConceptScore W2912475127C127313418 @default.
- W2912475127 hasConceptScore W2912475127C152745839 @default.
- W2912475127 hasConceptScore W2912475127C153180895 @default.
- W2912475127 hasConceptScore W2912475127C154945302 @default.
- W2912475127 hasConceptScore W2912475127C165205528 @default.
- W2912475127 hasConceptScore W2912475127C172707124 @default.
- W2912475127 hasConceptScore W2912475127C175551986 @default.
- W2912475127 hasConceptScore W2912475127C31972630 @default.
- W2912475127 hasConceptScore W2912475127C41008148 @default.
- W2912475127 hasConceptScore W2912475127C89992363 @default.
- W2912475127 hasLocation W29124751271 @default.
- W2912475127 hasOpenAccess W2912475127 @default.
- W2912475127 hasPrimaryLocation W29124751271 @default.
- W2912475127 hasRelatedWork W2503569529 @default.
- W2912475127 hasRelatedWork W2587789887 @default.
- W2912475127 hasRelatedWork W2738221750 @default.
- W2912475127 hasRelatedWork W2773120646 @default.
- W2912475127 hasRelatedWork W3156786002 @default.
- W2912475127 hasRelatedWork W3208028783 @default.
- W2912475127 hasRelatedWork W4211209597 @default.
- W2912475127 hasRelatedWork W4245792239 @default.
- W2912475127 hasRelatedWork W4317987726 @default.
- W2912475127 hasRelatedWork W3108696707 @default.
- W2912475127 isParatext "false" @default.
- W2912475127 isRetracted "false" @default.
- W2912475127 magId "2912475127" @default.
- W2912475127 workType "article" @default.