Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912477292> ?p ?o ?g. }
- W2912477292 endingPage "115" @default.
- W2912477292 startingPage "105" @default.
- W2912477292 abstract "Abstract A learning task is sequential if its data samples become available over time; kernel adaptive filters (KAFs) are sequential learning algorithms. There are three main challenges in KAFs: (1) selection of an appropriate Mercer kernel; (2) the lack of an effective method to determine kernel-sizes in an online learning context; (3) how to tune the step-size parameter. This work introduces a framework for online prediction that addresses the latter two of these open challenges. The kernel-sizes, unlike traditional KAF formulations, are both created and updated in an online sequential way. Further, to improve convergence time, we propose an adaptive step-size strategy that minimizes the mean-square-error (MSE) using a stochastic gradient algorithm. The proposed framework has been tested on three real-world data sets; results show both faster convergence to relatively low values of MSE and better accuracy when compared with KAF-based methods, long short-term memory, and recurrent neural networks." @default.
- W2912477292 created "2019-02-21" @default.
- W2912477292 creator A5071901091 @default.
- W2912477292 creator A5077623520 @default.
- W2912477292 creator A5090075559 @default.
- W2912477292 date "2019-04-01" @default.
- W2912477292 modified "2023-10-16" @default.
- W2912477292 title "Learning from data streams using kernel least-mean-square with multiple kernel-sizes and adaptive step-size" @default.
- W2912477292 cites W1492499319 @default.
- W2912477292 cites W1532668851 @default.
- W2912477292 cites W1689711448 @default.
- W2912477292 cites W1857867064 @default.
- W2912477292 cites W1880403203 @default.
- W2912477292 cites W1882844461 @default.
- W2912477292 cites W1973650920 @default.
- W2912477292 cites W1986580492 @default.
- W2912477292 cites W2014928429 @default.
- W2912477292 cites W2028059116 @default.
- W2912477292 cites W2064675550 @default.
- W2912477292 cites W2066294032 @default.
- W2912477292 cites W2071820974 @default.
- W2912477292 cites W2139320579 @default.
- W2912477292 cites W2141179006 @default.
- W2912477292 cites W2167932108 @default.
- W2912477292 cites W2522553089 @default.
- W2912477292 cites W2562635586 @default.
- W2912477292 cites W2587499148 @default.
- W2912477292 cites W2599651824 @default.
- W2912477292 cites W2605687850 @default.
- W2912477292 cites W2610635404 @default.
- W2912477292 cites W2620661538 @default.
- W2912477292 cites W2734777338 @default.
- W2912477292 cites W2746465276 @default.
- W2912477292 cites W2754582685 @default.
- W2912477292 cites W2756387736 @default.
- W2912477292 cites W2889230014 @default.
- W2912477292 cites W2894196255 @default.
- W2912477292 cites W2962833798 @default.
- W2912477292 cites W2964284952 @default.
- W2912477292 cites W3122775348 @default.
- W2912477292 doi "https://doi.org/10.1016/j.neucom.2019.01.055" @default.
- W2912477292 hasPublicationYear "2019" @default.
- W2912477292 type Work @default.
- W2912477292 sameAs 2912477292 @default.
- W2912477292 citedByCount "10" @default.
- W2912477292 countsByYear W29124772922019 @default.
- W2912477292 countsByYear W29124772922020 @default.
- W2912477292 countsByYear W29124772922021 @default.
- W2912477292 countsByYear W29124772922022 @default.
- W2912477292 countsByYear W29124772922023 @default.
- W2912477292 crossrefType "journal-article" @default.
- W2912477292 hasAuthorship W2912477292A5071901091 @default.
- W2912477292 hasAuthorship W2912477292A5077623520 @default.
- W2912477292 hasAuthorship W2912477292A5090075559 @default.
- W2912477292 hasBestOaLocation W29124772922 @default.
- W2912477292 hasConcept C105795698 @default.
- W2912477292 hasConcept C114614502 @default.
- W2912477292 hasConcept C122280245 @default.
- W2912477292 hasConcept C12267149 @default.
- W2912477292 hasConcept C134517425 @default.
- W2912477292 hasConcept C153180895 @default.
- W2912477292 hasConcept C154945302 @default.
- W2912477292 hasConcept C195699287 @default.
- W2912477292 hasConcept C33923547 @default.
- W2912477292 hasConcept C41008148 @default.
- W2912477292 hasConcept C48548287 @default.
- W2912477292 hasConcept C74193536 @default.
- W2912477292 hasConceptScore W2912477292C105795698 @default.
- W2912477292 hasConceptScore W2912477292C114614502 @default.
- W2912477292 hasConceptScore W2912477292C122280245 @default.
- W2912477292 hasConceptScore W2912477292C12267149 @default.
- W2912477292 hasConceptScore W2912477292C134517425 @default.
- W2912477292 hasConceptScore W2912477292C153180895 @default.
- W2912477292 hasConceptScore W2912477292C154945302 @default.
- W2912477292 hasConceptScore W2912477292C195699287 @default.
- W2912477292 hasConceptScore W2912477292C33923547 @default.
- W2912477292 hasConceptScore W2912477292C41008148 @default.
- W2912477292 hasConceptScore W2912477292C48548287 @default.
- W2912477292 hasConceptScore W2912477292C74193536 @default.
- W2912477292 hasLocation W29124772921 @default.
- W2912477292 hasLocation W29124772922 @default.
- W2912477292 hasLocation W29124772923 @default.
- W2912477292 hasOpenAccess W2912477292 @default.
- W2912477292 hasPrimaryLocation W29124772921 @default.
- W2912477292 hasRelatedWork W2009640922 @default.
- W2912477292 hasRelatedWork W2097033210 @default.
- W2912477292 hasRelatedWork W2106270407 @default.
- W2912477292 hasRelatedWork W2127229869 @default.
- W2912477292 hasRelatedWork W2155796519 @default.
- W2912477292 hasRelatedWork W2159686856 @default.
- W2912477292 hasRelatedWork W2269738787 @default.
- W2912477292 hasRelatedWork W2355980534 @default.
- W2912477292 hasRelatedWork W2537963993 @default.
- W2912477292 hasRelatedWork W3123056048 @default.
- W2912477292 hasVolume "339" @default.
- W2912477292 isParatext "false" @default.
- W2912477292 isRetracted "false" @default.
- W2912477292 magId "2912477292" @default.