Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912482694> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2912482694 abstract "A Close-up Monitoring System (CMS) has been designed in our research laboratory, which aims at avoiding any potential collision risk by detecting the frontal train’s distance from the captured video. Histogram of orientated gradient (HOG) has been used as a feature descriptor, because it gives robust performance in various illumination conditions. Random forest algorithm is a conventional machine learning tool, but it is new in the driving assistant application. Besides, the predicting process of our classifier is very fast because it only depends on a limited number of simple tests in each randomly-trained decision tree. Based on the HOG features and random forest algorithm, a close-range train detector has been designed. This proposed detector works as one detection module in CMS, and the correct detection rate of the close-range train was nearly 100%, which means there was no miss-detection in our control experiment. Compared with the traditional non-learning method, our learning-based approach achieves much stronger recognition ability with less false alarms." @default.
- W2912482694 created "2019-02-21" @default.
- W2912482694 creator A5020501122 @default.
- W2912482694 creator A5034806661 @default.
- W2912482694 creator A5083042979 @default.
- W2912482694 date "2018-11-01" @default.
- W2912482694 modified "2023-10-18" @default.
- W2912482694 title "Learning Approach with Random Forests on Vehicle Detection" @default.
- W2912482694 cites W1977823597 @default.
- W2912482694 cites W2012313888 @default.
- W2912482694 cites W2028465666 @default.
- W2912482694 cites W2048299340 @default.
- W2912482694 cites W2058224795 @default.
- W2912482694 cites W2063800913 @default.
- W2912482694 cites W2090178236 @default.
- W2912482694 cites W2090890830 @default.
- W2912482694 cites W2149706766 @default.
- W2912482694 cites W2161969291 @default.
- W2912482694 cites W2179942681 @default.
- W2912482694 cites W2294688185 @default.
- W2912482694 cites W2342431481 @default.
- W2912482694 cites W2462911424 @default.
- W2912482694 cites W2767844251 @default.
- W2912482694 doi "https://doi.org/10.1109/icdsp.2018.8631871" @default.
- W2912482694 hasPublicationYear "2018" @default.
- W2912482694 type Work @default.
- W2912482694 sameAs 2912482694 @default.
- W2912482694 citedByCount "4" @default.
- W2912482694 countsByYear W29124826942022 @default.
- W2912482694 countsByYear W29124826942023 @default.
- W2912482694 crossrefType "proceedings-article" @default.
- W2912482694 hasAuthorship W2912482694A5020501122 @default.
- W2912482694 hasAuthorship W2912482694A5034806661 @default.
- W2912482694 hasAuthorship W2912482694A5083042979 @default.
- W2912482694 hasConcept C119857082 @default.
- W2912482694 hasConcept C154945302 @default.
- W2912482694 hasConcept C169258074 @default.
- W2912482694 hasConcept C41008148 @default.
- W2912482694 hasConceptScore W2912482694C119857082 @default.
- W2912482694 hasConceptScore W2912482694C154945302 @default.
- W2912482694 hasConceptScore W2912482694C169258074 @default.
- W2912482694 hasConceptScore W2912482694C41008148 @default.
- W2912482694 hasLocation W29124826941 @default.
- W2912482694 hasOpenAccess W2912482694 @default.
- W2912482694 hasPrimaryLocation W29124826941 @default.
- W2912482694 hasRelatedWork W2911455822 @default.
- W2912482694 hasRelatedWork W3116896278 @default.
- W2912482694 hasRelatedWork W3174196512 @default.
- W2912482694 hasRelatedWork W4225360065 @default.
- W2912482694 hasRelatedWork W4282839226 @default.
- W2912482694 hasRelatedWork W4283016678 @default.
- W2912482694 hasRelatedWork W4318350883 @default.
- W2912482694 hasRelatedWork W4320483443 @default.
- W2912482694 hasRelatedWork W4322727400 @default.
- W2912482694 hasRelatedWork W4323021782 @default.
- W2912482694 isParatext "false" @default.
- W2912482694 isRetracted "false" @default.
- W2912482694 magId "2912482694" @default.
- W2912482694 workType "article" @default.