Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912489961> ?p ?o ?g. }
- W2912489961 endingPage "890" @default.
- W2912489961 startingPage "877" @default.
- W2912489961 abstract "Nanoparticles (NPs) have recently gained great attention as effective agents for enhanced oil recovery (EOR) applications, especially at ambient temperatures. Nevertheless, harsh conditions are needed to synthesize them and many tend to lack stability, exhibiting strong limitations in EOR application. As a solution, many researchers have used silica nanomaterials and grafted them with various agents to enhance their stability and alter their functionality. However, altering their overall functionality via coating could limit their stability in an aqueous media. Thus, partially coated nanoparticles should be used, such that the functionalizing agent is bonded to certain active groups on the nanoparticle surface. Herein, environmentally safe and tunable silicate-based nanoparticles, nanopyroxene, were synthesized under mild conditions. Nanopyroxene consists of two forms of binding sites on the surface made of the structural iron framework imparting a negative charge on the surface, which is compensated by sodium ions and the hydroxyl groups present on the surface of the silicate framework, which is responsible for its hydrophilicity. In this study, we partially altered the functionality of the nanopyroxene by anchoring a hydrophobic functionalizing agent of triethoxy(octyl)silane to the hydroxylated binding sites, generating half and totally hydroxyl functionalized nanopyroxene, such as hydrophobic pyroxenes (HPNPs) and Janus pyroxenes (JPNPs), respectively. Characterization techniques, such as scanning electron microscopy, Fourier transform infrared, X-ray diffraction, thermal gravimetric analysis, dynamic light scattering, and ζ-potential were conducted for the produced NPs to confirm their surface identity, functionality, stability, and morphology. After that, in comparison with brine, three different nanofluids were generated from the synthesized NPs to test their performance toward EOR in sandstone cores. The EOR performance was investigated by interfacial tension, contact angle, spontaneous imbibition, and displacement tests. The results showed that the HPNPs have the best stability and functionality compared with the other nanoparticle types. Contact angles in the presence of NPNP, JPNP, and HPNP nanofluids were measured to be 44 ± 2, 50 ± 2, and 55 ± 2°, respectively, confirming wettability alteration from oil-wet to water-wet. Interfacial tension was also noticeably reduced with the produced nanofluids at all temperatures, showing their great potential of oil displacement and to prove that a core flooding test was performed, confirming the capability of the stable nanoparticles as effective EOR agents in hydrocarbon reservoirs by recovering an additional 10.57% after brine flooding." @default.
- W2912489961 created "2019-02-21" @default.
- W2912489961 creator A5009532860 @default.
- W2912489961 creator A5013435812 @default.
- W2912489961 creator A5046207900 @default.
- W2912489961 creator A5071795890 @default.
- W2912489961 creator A5084711694 @default.
- W2912489961 date "2019-01-24" @default.
- W2912489961 modified "2023-09-30" @default.
- W2912489961 title "Nanopyroxene-Based Nanofluids for Enhanced Oil Recovery in Sandstone Cores at Reservoir Temperature" @default.
- W2912489961 cites W1507118930 @default.
- W2912489961 cites W1968265521 @default.
- W2912489961 cites W1969772642 @default.
- W2912489961 cites W1970393459 @default.
- W2912489961 cites W1976654947 @default.
- W2912489961 cites W1978497230 @default.
- W2912489961 cites W1981838042 @default.
- W2912489961 cites W1987545527 @default.
- W2912489961 cites W1990196750 @default.
- W2912489961 cites W2006649863 @default.
- W2912489961 cites W2007399539 @default.
- W2912489961 cites W2010487275 @default.
- W2912489961 cites W2011181137 @default.
- W2912489961 cites W2011254969 @default.
- W2912489961 cites W2013451292 @default.
- W2912489961 cites W2014058255 @default.
- W2912489961 cites W2014242390 @default.
- W2912489961 cites W2015805989 @default.
- W2912489961 cites W2024363044 @default.
- W2912489961 cites W2026169752 @default.
- W2912489961 cites W2027848540 @default.
- W2912489961 cites W2031506474 @default.
- W2912489961 cites W2033193140 @default.
- W2912489961 cites W2033528320 @default.
- W2912489961 cites W2035929179 @default.
- W2912489961 cites W2042288535 @default.
- W2912489961 cites W2045293510 @default.
- W2912489961 cites W2045547845 @default.
- W2912489961 cites W2046288791 @default.
- W2912489961 cites W2047086765 @default.
- W2912489961 cites W2052021745 @default.
- W2912489961 cites W2052227116 @default.
- W2912489961 cites W2056447565 @default.
- W2912489961 cites W2056656809 @default.
- W2912489961 cites W2057709731 @default.
- W2912489961 cites W2059272505 @default.
- W2912489961 cites W2060363643 @default.
- W2912489961 cites W2062012211 @default.
- W2912489961 cites W2065488027 @default.
- W2912489961 cites W2067254611 @default.
- W2912489961 cites W2067930040 @default.
- W2912489961 cites W2073047047 @default.
- W2912489961 cites W2077007432 @default.
- W2912489961 cites W2083872435 @default.
- W2912489961 cites W2085731681 @default.
- W2912489961 cites W2085759174 @default.
- W2912489961 cites W2088513981 @default.
- W2912489961 cites W2090706201 @default.
- W2912489961 cites W2092693965 @default.
- W2912489961 cites W2096997687 @default.
- W2912489961 cites W2103875161 @default.
- W2912489961 cites W2114965750 @default.
- W2912489961 cites W2133599163 @default.
- W2912489961 cites W2142837264 @default.
- W2912489961 cites W2157644990 @default.
- W2912489961 cites W2197805262 @default.
- W2912489961 cites W2279102513 @default.
- W2912489961 cites W2313354099 @default.
- W2912489961 cites W2313476146 @default.
- W2912489961 cites W2314073334 @default.
- W2912489961 cites W2324457706 @default.
- W2912489961 cites W2325967942 @default.
- W2912489961 cites W2344021192 @default.
- W2912489961 cites W2415502246 @default.
- W2912489961 cites W2468114985 @default.
- W2912489961 cites W2471517024 @default.
- W2912489961 cites W2530295509 @default.
- W2912489961 cites W2587464720 @default.
- W2912489961 cites W2595645766 @default.
- W2912489961 cites W2606661181 @default.
- W2912489961 cites W2608541783 @default.
- W2912489961 cites W2751421002 @default.
- W2912489961 cites W2767378565 @default.
- W2912489961 cites W2777108333 @default.
- W2912489961 cites W2915737447 @default.
- W2912489961 cites W3123542679 @default.
- W2912489961 cites W4243124335 @default.
- W2912489961 cites W4252783816 @default.
- W2912489961 doi "https://doi.org/10.1021/acs.energyfuels.8b03749" @default.
- W2912489961 hasPublicationYear "2019" @default.
- W2912489961 type Work @default.
- W2912489961 sameAs 2912489961 @default.
- W2912489961 citedByCount "40" @default.
- W2912489961 countsByYear W29124899612019 @default.
- W2912489961 countsByYear W29124899612020 @default.
- W2912489961 countsByYear W29124899612021 @default.
- W2912489961 countsByYear W29124899612022 @default.
- W2912489961 countsByYear W29124899612023 @default.