Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912491156> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2912491156 abstract "In this thesis, we examine different frameworks for the general theory of cyclic operads of Getzler and Kapranov. As suggested by the title, we set up theoretical grounds of syntactic, algebraic and categorified nature for the notion of a cyclic operad. In the syntactic treatment, we propose a λ-calculus-style formal language, called μ-syntax, as a lightweight representation of the entries-only cyclic operad structure. As opposed to the original exchangeable-output characterisation of cyclic operads, according to which the operations of a cyclic operad have inputs and an output that can be “exchanged” with one of the inputs, the entries-only cyclic operads have only entries (i.e. the output is put on the same level as the inputs). By employing the rewriting methods behind the formalism, we give a complete step-by-step proof of the equivalence between the unbiased and biased definitions of cyclic operads. Guided by the microcosm principle of Baez and Dolan and by the algebraic definitions of operads of Kelly and Fiore, in the algebraic approach we define cyclic operads internally to the category of Joyal’s species of structures. In this way, both the original exchangeable-output characterisation of Getzler and Kapranov, and the alternative entries-only characterisation of cyclic operads of Markl are epitomised as “monoid-like” objects in “monoidal-like” categories of species. (Strictly speaking, the two products on species, which capture the two ways of defining cyclic operads, are not monoidal, as they are not associative, but the induced structures arise in the same way as the one reflecting a specification of a monoid in a monoidal category. In particular, they are both subject to isomorphisms which fix the lack of associativity.) Relying on a result of Lamarche on descent for species, we use these “monoid-like” definitions to prove the equivalence between the exchangeable-output and entries-only points of view on cyclic operads. Finally, we establish a notion of categorified cyclic operad for set-based cyclic operads with symmetries, defined in terms of generators and relations. The categorifications we introduce are obtained by replacing sets of operations of the same arity with categories, by relaxing certain defining axioms, like associativity and commutativity, to isomorphisms, while leaving the equivariance strict, and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form “all diagrams of canonical isomorphisms commute”. For entries-only categorified cyclic operads, our proof is of syntactic nature and relies on the coherence of categorified operads established by Dosen and Petric. We prove the coherence of exchangeable-output categorified cyclic operads by “lifting to the categorified setting” the equivalence between entries-only and exchangeable-output cyclic operads, set up previously in the algebraic approach." @default.
- W2912491156 created "2019-02-21" @default.
- W2912491156 creator A5001249114 @default.
- W2912491156 date "2017-09-01" @default.
- W2912491156 modified "2023-09-27" @default.
- W2912491156 title "Cyclic operads : syntactic, algebraic and categorified aspects" @default.
- W2912491156 hasPublicationYear "2017" @default.
- W2912491156 type Work @default.
- W2912491156 sameAs 2912491156 @default.
- W2912491156 citedByCount "0" @default.
- W2912491156 crossrefType "dissertation" @default.
- W2912491156 hasAuthorship W2912491156A5001249114 @default.
- W2912491156 hasConcept C134306372 @default.
- W2912491156 hasConcept C136119220 @default.
- W2912491156 hasConcept C154690210 @default.
- W2912491156 hasConcept C199360897 @default.
- W2912491156 hasConcept C202444582 @default.
- W2912491156 hasConcept C206901836 @default.
- W2912491156 hasConcept C2779904274 @default.
- W2912491156 hasConcept C33923547 @default.
- W2912491156 hasConcept C41008148 @default.
- W2912491156 hasConcept C9376300 @default.
- W2912491156 hasConceptScore W2912491156C134306372 @default.
- W2912491156 hasConceptScore W2912491156C136119220 @default.
- W2912491156 hasConceptScore W2912491156C154690210 @default.
- W2912491156 hasConceptScore W2912491156C199360897 @default.
- W2912491156 hasConceptScore W2912491156C202444582 @default.
- W2912491156 hasConceptScore W2912491156C206901836 @default.
- W2912491156 hasConceptScore W2912491156C2779904274 @default.
- W2912491156 hasConceptScore W2912491156C33923547 @default.
- W2912491156 hasConceptScore W2912491156C41008148 @default.
- W2912491156 hasConceptScore W2912491156C9376300 @default.
- W2912491156 hasLocation W29124911561 @default.
- W2912491156 hasOpenAccess W2912491156 @default.
- W2912491156 hasPrimaryLocation W29124911561 @default.
- W2912491156 hasRelatedWork W1496833848 @default.
- W2912491156 hasRelatedWork W1634321019 @default.
- W2912491156 hasRelatedWork W1937077850 @default.
- W2912491156 hasRelatedWork W2097424377 @default.
- W2912491156 hasRelatedWork W2123466867 @default.
- W2912491156 hasRelatedWork W2483409877 @default.
- W2912491156 hasRelatedWork W2713525763 @default.
- W2912491156 hasRelatedWork W2794841725 @default.
- W2912491156 hasRelatedWork W2910464916 @default.
- W2912491156 hasRelatedWork W2911623333 @default.
- W2912491156 hasRelatedWork W295668421 @default.
- W2912491156 hasRelatedWork W2962832930 @default.
- W2912491156 hasRelatedWork W2963646542 @default.
- W2912491156 hasRelatedWork W3005668180 @default.
- W2912491156 hasRelatedWork W3013693805 @default.
- W2912491156 hasRelatedWork W3037112114 @default.
- W2912491156 hasRelatedWork W307173191 @default.
- W2912491156 hasRelatedWork W3100709899 @default.
- W2912491156 hasRelatedWork W3106440693 @default.
- W2912491156 hasRelatedWork W3201246832 @default.
- W2912491156 isParatext "false" @default.
- W2912491156 isRetracted "false" @default.
- W2912491156 magId "2912491156" @default.
- W2912491156 workType "dissertation" @default.