Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912493652> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2912493652 endingPage "762" @default.
- W2912493652 startingPage "752" @default.
- W2912493652 abstract "Abstract The global community and the academic world have paid great attention to whether and when China's carbon dioxide (CO2) emissions will peak. Our study investigates the issue with the Nonlinear Auto Regressive model with exogenous inputs (NARX), a dynamic nonlinear artificial neural network that has not been applied previously to this question. The key advance over previous models is the inclusion of feedback mechanisms such as the influence of past CO2 emissions on current emissions. The results forecast that the peak of China's CO2 emissions will occur in 2029, 2031 or 2035 at the level of 10.08, 10.78 and 11.63 billion tonnes under low-growth, benchmark moderate-growth, and high-growth scenarios. Based on the methodology of the mean impact value (MIV), we differentiate and rank the importance of the influence factors on CO2 emissions whereas previous studies included but did not rank factors. We suggest that China should choose the moderate growth development road and achieve its peak target in 2031, focusing on reducing CO2 emissions as a percent of GDP, less carbon-intensive industrialization, and choosing technologies that reduce CO2 emissions from coal or increasing the use of less carbon-intensive fuels." @default.
- W2912493652 created "2019-02-21" @default.
- W2912493652 creator A5038730311 @default.
- W2912493652 creator A5059078675 @default.
- W2912493652 creator A5070904383 @default.
- W2912493652 date "2019-05-01" @default.
- W2912493652 modified "2023-10-17" @default.
- W2912493652 title "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis" @default.
- W2912493652 cites W1988137246 @default.
- W2912493652 cites W1988495782 @default.
- W2912493652 cites W2000183434 @default.
- W2912493652 cites W2012035310 @default.
- W2912493652 cites W2013586872 @default.
- W2912493652 cites W2014865758 @default.
- W2912493652 cites W2016470701 @default.
- W2912493652 cites W2019826635 @default.
- W2912493652 cites W2061289263 @default.
- W2912493652 cites W2064468293 @default.
- W2912493652 cites W2071551700 @default.
- W2912493652 cites W2072070605 @default.
- W2912493652 cites W2099642588 @default.
- W2912493652 cites W2103452139 @default.
- W2912493652 cites W2105851579 @default.
- W2912493652 cites W2110493987 @default.
- W2912493652 cites W2194425852 @default.
- W2912493652 cites W2280596522 @default.
- W2912493652 cites W2307859830 @default.
- W2912493652 cites W2518750266 @default.
- W2912493652 cites W2555173499 @default.
- W2912493652 cites W2594741346 @default.
- W2912493652 cites W2601096366 @default.
- W2912493652 cites W2738552635 @default.
- W2912493652 cites W2760552270 @default.
- W2912493652 cites W2775631786 @default.
- W2912493652 cites W2804953486 @default.
- W2912493652 cites W2806153247 @default.
- W2912493652 doi "https://doi.org/10.1016/j.enpol.2019.01.058" @default.
- W2912493652 hasPublicationYear "2019" @default.
- W2912493652 type Work @default.
- W2912493652 sameAs 2912493652 @default.
- W2912493652 citedByCount "99" @default.
- W2912493652 countsByYear W29124936522019 @default.
- W2912493652 countsByYear W29124936522020 @default.
- W2912493652 countsByYear W29124936522021 @default.
- W2912493652 countsByYear W29124936522022 @default.
- W2912493652 countsByYear W29124936522023 @default.
- W2912493652 crossrefType "journal-article" @default.
- W2912493652 hasAuthorship W2912493652A5038730311 @default.
- W2912493652 hasAuthorship W2912493652A5059078675 @default.
- W2912493652 hasAuthorship W2912493652A5070904383 @default.
- W2912493652 hasConcept C121332964 @default.
- W2912493652 hasConcept C149782125 @default.
- W2912493652 hasConcept C154945302 @default.
- W2912493652 hasConcept C158622935 @default.
- W2912493652 hasConcept C162324750 @default.
- W2912493652 hasConcept C166957645 @default.
- W2912493652 hasConcept C191935318 @default.
- W2912493652 hasConcept C205649164 @default.
- W2912493652 hasConcept C39432304 @default.
- W2912493652 hasConcept C41008148 @default.
- W2912493652 hasConcept C50644808 @default.
- W2912493652 hasConcept C62520636 @default.
- W2912493652 hasConceptScore W2912493652C121332964 @default.
- W2912493652 hasConceptScore W2912493652C149782125 @default.
- W2912493652 hasConceptScore W2912493652C154945302 @default.
- W2912493652 hasConceptScore W2912493652C158622935 @default.
- W2912493652 hasConceptScore W2912493652C162324750 @default.
- W2912493652 hasConceptScore W2912493652C166957645 @default.
- W2912493652 hasConceptScore W2912493652C191935318 @default.
- W2912493652 hasConceptScore W2912493652C205649164 @default.
- W2912493652 hasConceptScore W2912493652C39432304 @default.
- W2912493652 hasConceptScore W2912493652C41008148 @default.
- W2912493652 hasConceptScore W2912493652C50644808 @default.
- W2912493652 hasConceptScore W2912493652C62520636 @default.
- W2912493652 hasFunder F4320321543 @default.
- W2912493652 hasFunder F4320327051 @default.
- W2912493652 hasFunder F4320327557 @default.
- W2912493652 hasLocation W29124936521 @default.
- W2912493652 hasOpenAccess W2912493652 @default.
- W2912493652 hasPrimaryLocation W29124936521 @default.
- W2912493652 hasRelatedWork W1967882366 @default.
- W2912493652 hasRelatedWork W2368432489 @default.
- W2912493652 hasRelatedWork W2371928941 @default.
- W2912493652 hasRelatedWork W2386387936 @default.
- W2912493652 hasRelatedWork W2387540786 @default.
- W2912493652 hasRelatedWork W2392808951 @default.
- W2912493652 hasRelatedWork W2394095783 @default.
- W2912493652 hasRelatedWork W2899084033 @default.
- W2912493652 hasRelatedWork W2899217644 @default.
- W2912493652 hasRelatedWork W2977857027 @default.
- W2912493652 hasVolume "128" @default.
- W2912493652 isParatext "false" @default.
- W2912493652 isRetracted "false" @default.
- W2912493652 magId "2912493652" @default.
- W2912493652 workType "article" @default.