Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912494733> ?p ?o ?g. }
- W2912494733 endingPage "775" @default.
- W2912494733 startingPage "764" @default.
- W2912494733 abstract "The application and comparison of receptor modeling techniques based on ambient air quality and particulate matter increasingly being studied. However, less is known about the comparison of receptor modeling techniques using spatial runoff quality data to identify and quantify the stormwater runoff pollution. This study compared the performance of principal component analysis-multiple linear regressions (PCA-MLR) and positive matrix factorization (PMF) models on stormwater runoff data collected from a small catchment (Site 1) with urban development activity and a sub-watershed outlet (Site 2). In both sites, the PCA-MLR model identified three pollution sources, whereas PMF identified five with a detailed source mechanism including two additional sources. Furthermore, the spatial land-use land-cover (LULC) analysis results indicate that the Site 1 exhibited a rapid conversion of the native area into a built-up area over the monitoring period compared to Site 2. Based on the modeling results, domestic wastewater and soil erosion were the major source of pollution at Site 1 and Site 2, respectively. The performance evaluation statistics including Nash coefficient (0.86-0.99), % error (<-14 to 2), and coefficient of determination (R2 ≤ 0.99) showed better performance for the PMF model than the PCA-MLR model. Overall, the PMF receptor modeling approach was found to be more robust for the current study sites with different land use types. The findings of this study could provide a basis for further application of these receptor models and their comparison using spatial-temporal ionic and sediment related runoff monitoring data. Also, the models from this research could be combined with other receptor models on runoff quality data (e.g. CMB or UNMIX) to explore and inter-compare the outcomes, and to determine how the model results are affected by modifications to input data and model parameters. Therefore, further research is required to precisely assess the accuracy of both receptor models." @default.
- W2912494733 created "2019-02-21" @default.
- W2912494733 creator A5005994631 @default.
- W2912494733 creator A5013840730 @default.
- W2912494733 creator A5055224951 @default.
- W2912494733 creator A5070913707 @default.
- W2912494733 creator A5077094962 @default.
- W2912494733 creator A5082997180 @default.
- W2912494733 creator A5084671724 @default.
- W2912494733 date "2019-05-01" @default.
- W2912494733 modified "2023-10-17" @default.
- W2912494733 title "Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea" @default.
- W2912494733 cites W1544275441 @default.
- W2912494733 cites W1824369816 @default.
- W2912494733 cites W1963492615 @default.
- W2912494733 cites W1963659346 @default.
- W2912494733 cites W1968502380 @default.
- W2912494733 cites W1975995480 @default.
- W2912494733 cites W1978429554 @default.
- W2912494733 cites W1979656817 @default.
- W2912494733 cites W1979948906 @default.
- W2912494733 cites W1983118281 @default.
- W2912494733 cites W1985869682 @default.
- W2912494733 cites W2005127832 @default.
- W2912494733 cites W2006803732 @default.
- W2912494733 cites W2009599632 @default.
- W2912494733 cites W2014707000 @default.
- W2912494733 cites W2019607491 @default.
- W2912494733 cites W2030099939 @default.
- W2912494733 cites W2030746015 @default.
- W2912494733 cites W2040091038 @default.
- W2912494733 cites W2041657483 @default.
- W2912494733 cites W2041971660 @default.
- W2912494733 cites W2045430259 @default.
- W2912494733 cites W2050399770 @default.
- W2912494733 cites W2053196959 @default.
- W2912494733 cites W2058128157 @default.
- W2912494733 cites W2058998445 @default.
- W2912494733 cites W2059197711 @default.
- W2912494733 cites W2059745395 @default.
- W2912494733 cites W2064156189 @default.
- W2912494733 cites W2068656633 @default.
- W2912494733 cites W2075940146 @default.
- W2912494733 cites W2099746518 @default.
- W2912494733 cites W2141639497 @default.
- W2912494733 cites W2278529821 @default.
- W2912494733 cites W2304393989 @default.
- W2912494733 cites W2332780041 @default.
- W2912494733 cites W2338957280 @default.
- W2912494733 cites W2345359391 @default.
- W2912494733 cites W2473790476 @default.
- W2912494733 cites W2609166239 @default.
- W2912494733 cites W2619604597 @default.
- W2912494733 cites W2748194133 @default.
- W2912494733 cites W2759439682 @default.
- W2912494733 doi "https://doi.org/10.1016/j.scitotenv.2019.01.377" @default.
- W2912494733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30738258" @default.
- W2912494733 hasPublicationYear "2019" @default.
- W2912494733 type Work @default.
- W2912494733 sameAs 2912494733 @default.
- W2912494733 citedByCount "97" @default.
- W2912494733 countsByYear W29124947332019 @default.
- W2912494733 countsByYear W29124947332020 @default.
- W2912494733 countsByYear W29124947332021 @default.
- W2912494733 countsByYear W29124947332022 @default.
- W2912494733 countsByYear W29124947332023 @default.
- W2912494733 crossrefType "journal-article" @default.
- W2912494733 hasAuthorship W2912494733A5005994631 @default.
- W2912494733 hasAuthorship W2912494733A5013840730 @default.
- W2912494733 hasAuthorship W2912494733A5055224951 @default.
- W2912494733 hasAuthorship W2912494733A5070913707 @default.
- W2912494733 hasAuthorship W2912494733A5077094962 @default.
- W2912494733 hasAuthorship W2912494733A5082997180 @default.
- W2912494733 hasAuthorship W2912494733A5084671724 @default.
- W2912494733 hasConcept C119857082 @default.
- W2912494733 hasConcept C127313418 @default.
- W2912494733 hasConcept C150547873 @default.
- W2912494733 hasConcept C173051318 @default.
- W2912494733 hasConcept C179006392 @default.
- W2912494733 hasConcept C187320778 @default.
- W2912494733 hasConcept C18903297 @default.
- W2912494733 hasConcept C2780648208 @default.
- W2912494733 hasConcept C2780797713 @default.
- W2912494733 hasConcept C39432304 @default.
- W2912494733 hasConcept C41008148 @default.
- W2912494733 hasConcept C4792198 @default.
- W2912494733 hasConcept C50477045 @default.
- W2912494733 hasConcept C521259446 @default.
- W2912494733 hasConcept C76886044 @default.
- W2912494733 hasConcept C86803240 @default.
- W2912494733 hasConceptScore W2912494733C119857082 @default.
- W2912494733 hasConceptScore W2912494733C127313418 @default.
- W2912494733 hasConceptScore W2912494733C150547873 @default.
- W2912494733 hasConceptScore W2912494733C173051318 @default.
- W2912494733 hasConceptScore W2912494733C179006392 @default.
- W2912494733 hasConceptScore W2912494733C187320778 @default.
- W2912494733 hasConceptScore W2912494733C18903297 @default.
- W2912494733 hasConceptScore W2912494733C2780648208 @default.