Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912497699> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2912497699 endingPage "226" @default.
- W2912497699 startingPage "226" @default.
- W2912497699 abstract "The Letter to the Editor by Delanghe et al.1Delanghe J.R. Delanghe S.E. De Buyzere M.L. Speeckaert M.M. Infrared spectroscopic imaging for interrogating the carbohydrate biochemistry of diabetic nephropathy progression.Kidney Int. 2016; (in press)Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar highlights the important differences that enzymatic glycosylation and nonenzymatic glycosylation (also frequently termed glycation) are likely to play in different types of renal disease progression. The authors are correct that both enzymatic and nonenzymatic glycosylation (glycation) will indeed be expected to have an influence on the infrared spectra. To date, there have been no comprehensive studies in human tissue using infrared imaging that have deconvolved the biochemical contribution of these 2 processes to the different spectral regions. For this reason, in our article,2Varma V.K. Kajdacsy-Balla A. Akkina S.K. et al.A label-free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progression.Kidney Int. 2016; 89: 1153-1159Abstract Full Text Full Text PDF PubMed Scopus (35) Google Scholar we purposely avoided specifying the exact type of glycosylation that we were measuring and instead used a more general “glycosylation-associated” term throughout the article. There has been evidence from multiple studies that the identified spectral peaks are associated with glycosylation but nothing more specific such as the enzymatic or nonenzymatic type. Indeed, we discussed the need for further in vitro studies to precisely characterize the biomarker that we are detecting. Biophotonic techniques frequently have difficulty in determining the precise biomolecular source of an observed signature due to the complex biochemical environment that exists in the tissue. As discussed in the article, we anticipate that the major component of the signal at the 1030-cm–1 and 1080-cm–1 wavenumbers are due to the production of advanced glycation end products by nonenzymatic glycosylation that occurs due to diabetes3Brownlee M. Vlassara H. Cerami A. Non-enzymatic glycosylation and the pathogenesis of diabetic complications.Ann Intern Med. 1984; 101: 527-537Crossref PubMed Scopus (911) Google Scholar, 4Brownlee M. Advanced protein glycosylation in diabetes and aging.Annu Rev Med. 1995; 46: 223-234Crossref PubMed Scopus (1145) Google Scholar; however, as we are not able to prove this definitively at this time, we avoided specifically reporting this. Infrared spectroscopic imaging for interrogating the carbohydrate biochemistry of diabetic nephropathy progressionKidney InternationalVol. 90Issue 1PreviewWe read with interest the article by Varma et al.1 on infrared imaging, which can identify biochemical alterations that precede morphologic changes in diabetic nephropathy. However, we were struck by the confusion between glycation (nonenzymatic reaction between glucose and lysine groups) and glycosylation (reaction in which a carbohydrate is attached to a hydroxyl or other functional group of another molecule). Glycation is a haphazard process that impairs functioning of biomolecules, whereas glycosylation occurs at defined sites on target molecules and is required in order for the molecule to function. Full-Text PDF Open ArchiveA label-free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progressionKidney InternationalVol. 89Issue 5PreviewRoutine histology, the current gold standard, involves staining for specific biomolecules. However, untapped biochemical information in tissue can be gathered using biochemical imaging. Infrared spectroscopy is an emerging modality that allows label-free chemical imaging to derive biochemical information (such as protein, lipids, DNA, collagen) from tissues. Here we employed this technology in order to better predict the development of diabetic nephropathy. Using human primary kidney biopsies or nephrectomies, we obtained tissue from 4 histologically normal kidneys, 4 histologically normal kidneys from diabetic subjects, and 5 kidneys with evidence of diabetic nephropathy. Full-Text PDF Open Archive" @default.
- W2912497699 created "2019-02-21" @default.
- W2912497699 creator A5018618816 @default.
- W2912497699 creator A5027455752 @default.
- W2912497699 creator A5048437118 @default.
- W2912497699 creator A5082851014 @default.
- W2912497699 creator A5086421017 @default.
- W2912497699 date "2016-07-01" @default.
- W2912497699 modified "2023-10-18" @default.
- W2912497699 title "The Authors Reply" @default.
- W2912497699 cites W2080904568 @default.
- W2912497699 cites W2120833123 @default.
- W2912497699 cites W2273144352 @default.
- W2912497699 cites W2422540038 @default.
- W2912497699 doi "https://doi.org/10.1016/j.kint.2016.03.015" @default.
- W2912497699 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27312453" @default.
- W2912497699 hasPublicationYear "2016" @default.
- W2912497699 type Work @default.
- W2912497699 sameAs 2912497699 @default.
- W2912497699 citedByCount "0" @default.
- W2912497699 crossrefType "journal-article" @default.
- W2912497699 hasAuthorship W2912497699A5018618816 @default.
- W2912497699 hasAuthorship W2912497699A5027455752 @default.
- W2912497699 hasAuthorship W2912497699A5048437118 @default.
- W2912497699 hasAuthorship W2912497699A5082851014 @default.
- W2912497699 hasAuthorship W2912497699A5086421017 @default.
- W2912497699 hasBestOaLocation W29124976991 @default.
- W2912497699 hasConcept C147990577 @default.
- W2912497699 hasConcept C170493617 @default.
- W2912497699 hasConcept C185592680 @default.
- W2912497699 hasConcept C2777313579 @default.
- W2912497699 hasConcept C2781197716 @default.
- W2912497699 hasConcept C55493867 @default.
- W2912497699 hasConcept C70721500 @default.
- W2912497699 hasConcept C71924100 @default.
- W2912497699 hasConcept C86803240 @default.
- W2912497699 hasConceptScore W2912497699C147990577 @default.
- W2912497699 hasConceptScore W2912497699C170493617 @default.
- W2912497699 hasConceptScore W2912497699C185592680 @default.
- W2912497699 hasConceptScore W2912497699C2777313579 @default.
- W2912497699 hasConceptScore W2912497699C2781197716 @default.
- W2912497699 hasConceptScore W2912497699C55493867 @default.
- W2912497699 hasConceptScore W2912497699C70721500 @default.
- W2912497699 hasConceptScore W2912497699C71924100 @default.
- W2912497699 hasConceptScore W2912497699C86803240 @default.
- W2912497699 hasIssue "1" @default.
- W2912497699 hasLocation W29124976991 @default.
- W2912497699 hasLocation W29124976992 @default.
- W2912497699 hasOpenAccess W2912497699 @default.
- W2912497699 hasPrimaryLocation W29124976991 @default.
- W2912497699 hasRelatedWork W1950022014 @default.
- W2912497699 hasRelatedWork W1957725278 @default.
- W2912497699 hasRelatedWork W1976120343 @default.
- W2912497699 hasRelatedWork W1999789808 @default.
- W2912497699 hasRelatedWork W2067144678 @default.
- W2912497699 hasRelatedWork W2092332459 @default.
- W2912497699 hasRelatedWork W2397237675 @default.
- W2912497699 hasRelatedWork W2899084033 @default.
- W2912497699 hasRelatedWork W3114106798 @default.
- W2912497699 hasRelatedWork W3177082222 @default.
- W2912497699 hasVolume "90" @default.
- W2912497699 isParatext "false" @default.
- W2912497699 isRetracted "false" @default.
- W2912497699 magId "2912497699" @default.
- W2912497699 workType "article" @default.