Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912503029> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2912503029 endingPage "2401" @default.
- W2912503029 startingPage "2387" @default.
- W2912503029 abstract "Let G be a finite p-group for some prime p, say of order pn. For odd p the inverse problem of Galois theory for G has been solved through the (classical) work of Scholz and Reichardt, and Serre has shown that their method leads to fields of realization where at most n rational primes are (tamely) ramified. The approach by Shafarevich, for arbitrary p, has turned out to be quite delicate in the case p=2. In this paper we treat this exceptional case in the spirit of Serre’s result, bounding the number of ramified primes at least by an integral polynomial in the rank of G, the polynomial depending on the 2-class of G." @default.
- W2912503029 created "2019-02-21" @default.
- W2912503029 creator A5041267346 @default.
- W2912503029 date "2018-12-31" @default.
- W2912503029 modified "2023-10-18" @default.
- W2912503029 title "Realizing 2-groups as Galois groups following Shafarevich and Serre" @default.
- W2912503029 cites W1530163290 @default.
- W2912503029 cites W1550601727 @default.
- W2912503029 cites W1912199649 @default.
- W2912503029 cites W2010176799 @default.
- W2912503029 cites W2035787234 @default.
- W2912503029 cites W2077445139 @default.
- W2912503029 cites W2089137190 @default.
- W2912503029 cites W2133042215 @default.
- W2912503029 cites W2328348254 @default.
- W2912503029 cites W2544191988 @default.
- W2912503029 cites W2963477335 @default.
- W2912503029 cites W4211143314 @default.
- W2912503029 cites W4292402448 @default.
- W2912503029 doi "https://doi.org/10.2140/ant.2018.12.2387" @default.
- W2912503029 hasPublicationYear "2018" @default.
- W2912503029 type Work @default.
- W2912503029 sameAs 2912503029 @default.
- W2912503029 citedByCount "0" @default.
- W2912503029 crossrefType "journal-article" @default.
- W2912503029 hasAuthorship W2912503029A5041267346 @default.
- W2912503029 hasConcept C136119220 @default.
- W2912503029 hasConcept C145899342 @default.
- W2912503029 hasConcept C182349385 @default.
- W2912503029 hasConcept C197968787 @default.
- W2912503029 hasConcept C202444582 @default.
- W2912503029 hasConcept C26204071 @default.
- W2912503029 hasConcept C33923547 @default.
- W2912503029 hasConcept C35435516 @default.
- W2912503029 hasConcept C67536143 @default.
- W2912503029 hasConcept C78562435 @default.
- W2912503029 hasConceptScore W2912503029C136119220 @default.
- W2912503029 hasConceptScore W2912503029C145899342 @default.
- W2912503029 hasConceptScore W2912503029C182349385 @default.
- W2912503029 hasConceptScore W2912503029C197968787 @default.
- W2912503029 hasConceptScore W2912503029C202444582 @default.
- W2912503029 hasConceptScore W2912503029C26204071 @default.
- W2912503029 hasConceptScore W2912503029C33923547 @default.
- W2912503029 hasConceptScore W2912503029C35435516 @default.
- W2912503029 hasConceptScore W2912503029C67536143 @default.
- W2912503029 hasConceptScore W2912503029C78562435 @default.
- W2912503029 hasIssue "10" @default.
- W2912503029 hasLocation W29125030291 @default.
- W2912503029 hasOpenAccess W2912503029 @default.
- W2912503029 hasPrimaryLocation W29125030291 @default.
- W2912503029 hasRelatedWork W1568570249 @default.
- W2912503029 hasRelatedWork W2072259342 @default.
- W2912503029 hasRelatedWork W2136142130 @default.
- W2912503029 hasRelatedWork W2319191324 @default.
- W2912503029 hasRelatedWork W2937656914 @default.
- W2912503029 hasRelatedWork W4206315376 @default.
- W2912503029 hasRelatedWork W4380323552 @default.
- W2912503029 hasRelatedWork W92122087 @default.
- W2912503029 hasRelatedWork W959740625 @default.
- W2912503029 hasRelatedWork W2189024741 @default.
- W2912503029 hasVolume "12" @default.
- W2912503029 isParatext "false" @default.
- W2912503029 isRetracted "false" @default.
- W2912503029 magId "2912503029" @default.
- W2912503029 workType "article" @default.